
1

Improving the Analysis of

Data in Safety-Related Systems

Report on a Project Submitted in Partial Fulfilment of the Requirements for the

Postgraduate Diploma in Safety Critical Systems Engineering

Presented to the Department of Computer Science

of the University of York by

James Inge

Supervisor: David Pumfrey

Number of words = 27141, number of pages = 58, as indicated by the Microsoft Office Word 2003 “word count”

tool, including the title page, preliminary pages, report body and appendix.

Issue 1. © James Inge, 12 September 2008.

2

1. Abstract

The behaviour of many complex systems is based not only on their static design but also on configurable data

used by the system. In order to assess the safety of such a system, it is necessary to have an understanding about

the types of problem such use of data may cause, through a process of safety analysis. This report reviews

current guidance and best practice for treatment of data in safety analysis. It finds that while advice exists on

how to manage the safety impact of data use after a potential hazard has been identified, there is a lack of tools

and guidance for the initial task of hazard identification for safety-related data.

A taxonomy of types of data fault is proposed that can be used as a checklist to aid in the hazard identification

process. The taxonomy is then validated using accident investigation reports, to determine whether it is capable

of classifying the data-related issues seen in real life.

3

2. Preliminaries

2.1. Table of Contents

1. ABSTRACT 2
2. PRELIMINARIES 3
2.1. Table of Contents 3
2.2. Table of Tables 4
2.3. Table of Figures 5
2.4. Declaration 5
2.5. Acknowledgements 5
2.6. Statement of Ethics 5
2.7. Motivation 6
3. METHOD 7
4. LITERATURE REVIEW 8
4.1. Standards 8

4.1.1. IEC 2382 (1993) 8
4.1.2. DO-178B (1992) 8
4.1.3. DO-200A (1998) and DO-201A (2000) 9
4.1.4. Def Stan 00-55 (1997) 9
4.1.5. IEC 61508 (1998) 9
4.1.6. SW01 (2003) 10
4.1.7. Def Stan 00-56 (2007) 10
4.1.8. Def Stan 00-56 Supporting Guidance (2008) 10
4.1.9. Def (Aust) 5679 (2007) 11
4.1.10. GEIA-STD-0010 (2008) 11

4.2. Published Papers 12
4.3. Summary of Literature 14
5. DISCUSSION 16
5.1. Definition of Data 16
5.2. Taxonomy of Data Types 16

5.2.1. Objective 17
5.2.2. Intent 17
5.2.3. Third Party 18

5.3. Data versus Software 18
5.4. Sensor Input, Communications and Rate of Change of Data 19
5.5. Preparation of Data 19
5.6. Data and Risk Analysis 20
6. TAXONOMY OF DATA FAULTS 21
6.1. Generic Data Faults 21
6.2. Existing Fault Taxonomies 21

6.2.1. Beizer’s Bug Taxonomy 21
6.2.2. Railway Industry Data 22
6.2.3. SHARD Guidewords (Pumfrey 2000) 23

6.3. Fault Taxonomies extracted from Standards 24
6.3.1. IEC 61508 24
6.3.2. DO-200A 24
6.3.3. MOD CEE Guidance 25

6.4. A Combined Data Fault Taxonomy 25
6.5. Discussion of Data Faults 29

6.5.1. Meaning 29
6.5.2. Format 31
6.5.3. Timing 32
6.5.4. Provenance 33

6.6. Use of the Data Fault Taxonomy 33
7. DATA-RELATED ACCIDENTS 34

4

7.1. Air Accident Investigation Branch Reports 34
7.1.1. F-OJHI, Birmingham International Airport, UK 34
7.1.2. G-MEDG, Khartoum Airport, Sudan 34

7.2. Marine Accident Investigation Branch Reports 35
7.2.1. Westhaven 35
7.2.2. Lykes Voyager / Washington Senator 35
7.2.3. MV Lerrix 35
7.2.4. Dieppe 36
7.2.5. P&O Nedlloyd Genoa 36
7.2.6. FV Harvest Hope 37
7.2.7. FV Brothers 37
7.2.8. Arctic Ocean / Maritime Lady 37
7.2.9. Hilli 38
7.2.10. MV Thunder 38
7.2.11. Octopus / Harald 38
7.2.12. Annabella 39
7.2.13. M-Notices 39

7.3. Rail Accident Investigation Branch Reports 39
7.3.1. RAIB Autumn Adhesion Investigation 40
7.3.2. Despatch of unsecured load from Besford Hall 40
7.3.3. Unauthorised train movement at High Street Kensington 40
7.3.4. Freight Train Derailment at Maltby North 41
7.3.5. Possession Irregularity near Manor Park 41
7.3.6. Passenger door open on a moving train near Desborough 42
7.3.7. Fire on HGV shuttle in the Channel Tunnel 42
7.3.8. Derailment at Cromore, Northern Ireland 42
7.3.9. Derailment at Duddeston Junction, Birmingham 42

7.4. Other Selected Accident Reports 43
7.4.1. ZK-NZP, Ross Island, Antarctica 43
7.4.2. N651AA, Cali, Columbia 43
7.4.3. N52AW, near Pasamayo, Peru 44

7.5. Summary of Accident Analysis 44
8. AREAS FOR FURTHER WORK 46
8.1. Development of the Data Fault Taxonomy 46
8.2. Development of Further Guidance for Safety Analysis of Data 46
8.3. Application to Security 47
8.4. Metadata for Safety Assurance 47
9. CONCLUSIONS 48
10. ACRONYMS 50
11. BIBLIOGRAPHY 51
APPENDIX A. TAXONOMY COVERAGE CHART 55

2.2. Table of Tables
Table 1. Levels of integration of data into a system. 18
Table 2. Selected categories from Beizer's Bug Taxonomy [5]. 22
Table 3. Occurrence of data bugs in software. 22
Table 4. Data faults in railway infrastructure data (Harrison & Pierce) [27] 22
Table 5. Data errors from external errors (Faulkner & Storey) [20] 23
Table 6. Data faults in status data (Faulkner) [17]. 23
Table 7. SHARD Guidewords [41]. 24
Table 8. A new taxonomy for data faults. 26
Table 9. Derivation of fault categories. 29
Table 10. Occurrence of fault types within reviewed accident reports. 45

5

2.3. Table of Figures
Figure 1. Decomposition of types of data. 17
Figure 2. Bow-tie diagram showing relationship of causes to faults and hazards. 33

2.4. Declaration

All work presented in this report is that of the author, except where the work of others is explicitly

acknowledged. In particular it should be noted that views expressed in this report are those of the author and

do not necessarily represent the view of his employer, the Ministry of Defence.

2.5. Acknowledgements

Completing the SCSE course and this project in particular has taken an inordinate amount of my spare time and I

must thank my ever understanding fiancée, Helen, for taking care of me while I worked and putting up with my

absences.

I must also thank my supervisor, David Pumfrey, and the rest of the High Integrity Systems Engineering group at

the University of York Department of Computer Science for their excellent tuition and continued support, and

for making the whole course a thought-provoking experience.

Final thanks must go to my employers, the Ministry of Defence, for paying for my way and allowing me the time

to attend the taught modules of my course.

2.6. Statement of Ethics

This project does not involve or promote any harmful activity. It is intended to advance the discipline of safety

management in a way that will help avoid harmful accidents. It has been conducted as a desktop exercise that

has not required the participation of others. The accident data used in this report has been taken from public

sources and does not identify individuals.

6

2.7. Motivation

“The more data we have, the more likely we are to drown in it”.

Nassim Nicholas Taleb [49]

A large amount of effort has been spent investigating the relationship between the design of systems (both

hardware and software), and the unintended harm that might arise from their use. Traditional system safety has

been concerned with ensuring that these systems are correctly designed for safe function, that the designs meet

their users’ true requirements, and that they will continue to operate correctly, or in the case of failure, fail in a

known safe manner.

With the increased use of ever more powerful data processing hardware and configurable electronics, a new

problem is emerging. Data forms a vital part of these systems and is relied upon for their safety. Systems that

are functioning “correctly” according to their design may become unsafe if given the wrong configuration or

input data.

Concern about data-driven systems has recently been highlighted by articles in the Safety Critical Systems Club

newsletter. Neil Storey argues that data is often ignored or overlooked at the initial stages of safety analysis and

hence the familiar tools of system safety engineering are not applied to the data components of systems. He

concludes that “there is no established ‘best-practice’ in this area and no meaningful guidance within the various

standards” [46]. The sentiment is echoed by Felix Redmill, who bemoans the lack of available literature

providing guidance on the preparation, validation, security, availability and integrity of data [42].

Storey’s solution to the problem is for system designers to identify data as a system component, allowing

consideration of the system-level effects of this component and subsequent application of hazard analysis and

other safety engineering techniques. This idea gives the starting point that motivates this project: to improve

hazard identification techniques so data is more likely to be identified as a potentially hazardous system

component, and so that more of the hazards associated with data can be identified early in the design process.

7

3. Method

The aim of this project is to improve safety analysis so that accidents resulting from data issues may be avoided.

To achieve this, the following method has been used:

• Literature review.

• Examination of the definition of data and discussion of related issues.

• Production of a taxonomy for data faults.

• Analysis of published accident and incident reports.

• Classification of data-related faults according to the taxonomy.

A literature review was carried out (section 4 of this report), to attempt to determine the current state of the art

for safety analysis of data in systems, and determine where there is scope for improvement. This was divided

into two areas: standards and published papers. It has also served to identify potentially useful techniques that

can be built on by this work.

The literature review identified that while few standards are focussed entirely on the safety of data, guidance on

safety assurance for systems that use data can be drawn from a variety of different sources. However, the review

did identify that there is a gap in the guidance concerning hazard analysis for data.

Section 5 of the report looks at how that gap can be filled, by developing ideas about what makes up data, and

what sort of problems can arise with it. In Section 6 this is developed into a taxonomy of data faults, drawing on

previously published work and new material. The taxonomy is intended to be used as a checklist to guide hazard

analysis.

In Section 7, a selection of accident and incident reports are presented, where the author has identified that

safety-related occurrences have been caused or influenced by data considerations in the real world. Subsequent

to the development of the data fault taxonomy, each accident was classified to show the type of data fault

involved. This is important to help judge whether the proposed taxonomy is capable of being used in practice.

As recommended by Holloway and Johnson [29], accident reports from official investigatory sources have been

used as the basis from this work.

8

4. Literature Review

4.1. Standards

“The nice thing about standards is that you have so many to choose from.”

Andrew S. Tanenbaum [50]

4.1.1. IEC 2382 (1993)

In ISO/IEC 2382, Information Technology Vocabulary, “data” is defined as “a reinterpretable representation of

information in a formalized manner suitable for communication, interpretation or processing”, where

information is knowledge that has a contextual meaning. The definition of data is separate from that of

“software”, which consists of “programs, procedures, rules and associated documentation” [22]. While using

similar definitions, later standards often treat data as part of software.

4.1.2. DO-178B (1992)

RTCA DO-178B: Software Considerations in Airborne Systems and Equipment Certification [2] uses the term

data in a generic sense to mean information about or generated by the software development process. It does

include data within its definition of software, but focuses only on the original airworthiness certification.

Because it treats user-modifiable data as an operational aspect of software, it states that data certification is out

of scope. However, the inclusion of this statement as specific example in the text hints that the authors believe

that such data does require certification (albeit outside DO-178B). This can be explained by the fact that the

DO-178B was designed to be used in conjunction with a suite of other documents such as ARP 4761 and DO-

254, which would set requirements for other areas of the system development lifecycle [43].

The standard guides that from the planning stage software should be designed using fault tolerance techniques to

tolerate errors in input data. Where user-supplied software or data (“Field-Loadable Software” (FLS)) can be

added after installation, DO-178B gives guidance that the system should be able to detect corrupt, partially

loaded or inappropriate data. Once such a fault is detected, the software should also be required to react

appropriately. This should be checked using robustness test cases, which should include the possible failure

modes of incoming data. The standard does not give guidance on how these failure modes should be

determined.

DO-178B also highlights the potential for a new load of data to either change the configuration of the software

(outside the configuration management process), or impair the ability of the system to determine its

configuration. Either effect could impact the ability of the system to verify that it was operating in a certified

configuration. There should also be protection to prevent the non-modifiable parts of the software being

unintentionally changed by user-loaded data, or the modifiable parts being changed in a way that was not

designed by the software supplier.

The lack of treatment of data assurance issues in DO-178B has not been noted as an issue in work published by

the ASSC. It was not mentioned at all in a report looking at using DO-178B development as evidence for safety

under UK military standards [43], and only in passing in guidance on applying the standard [25]. This guidance

has a section on “additional considerations” for FLS. It says that FLS elements must meet the safety and

security requirements of DO-178B, should be included in a suitable configuration management system and

should be subject to a full Safety Assessment, with elevation to the Safety Working Group, if they need to be

changed. It also suggests that FLS elements should be tested on the target computer, to show that the data is not

corrupted and verify the algorithms. It is unclear whether this testing should be during preparation of the FLS, at

runtime (it gives an example of using cyclic redundancy checks to detect corruption), or both. Verification of

the algorithms embedded in the FLS might well require off-line testing on representative hardware, or use of

static analysis techniques. The guidance also mentions that data integrity checks for executable code and data

integrity tools should be described as part of a system’s configuration control information, however this seems to

9

be more to do with ensuring that the software can be consistently reproduced than ensuring the safety of working

data. While the guidance document does not add much guidance about data to that already contained in DO-

178B, it asserts that FLS will generally only be used on systems of low safety criticality. It can be inferred from

this that meeting the necessary safety requirements for field loadable software (including data), is seen as

especially difficult or onerous.

4.1.3. DO-200A (1998) and DO-201A (2000)

As mentioned in section 4.1.2, DO-178B was written to form part of a wider suite of standards and guidance.

Two other RTCA standards are relevant here: DO-200A, Standards for Processing Aeronautical Data [3] and

DO-201A, Standards for Aeronautical Information [4]. The author has not had access to these commercial

standards during the preparation of this report, however they are described by Faulkner and Storey in [21, 48].

According to Faulkner and Storey, DO-200A relates to air navigation data. It introduces integrity requirements

for data and defines “qualities” or attributes, including accuracy, resolution, assurance level, traceability,

timeliness, completeness and format [21]. DO-201A appears to describe the data requirements themselves, in

terms of these qualities [48].

DO-200A mentions a need to establish the adequacy of relationships between data items, which Faulkner and

Storey interpret as implying that the such relationships will require testing. The standard also provides a

framework for describing the “data supply chain”, a description of how data is generated, processed, passed

through intermediaries, and eventually delivered to its end user. While the data chain may contain many links,

the responsibility for satisfying the integrity requirements rests with the end user of the data [21].

4.1.4. Def Stan 00-55 (1997)

Def Stan 00-55 Issue 2, Requirements for Safety Related Software in Defence Equipment (now obsolescent),

included data in its definition of software: “Computer programs, procedures and associated documentation and

data pertaining to the operation of a computer system”. However, it treated data separately in the text of the

standard, which required that where the safety properties of such software relied on data, “the characteristics and

properties of the data shall be formally specified and designed”. Further clauses ensured that data was

considered through the design process. They included requirements for traceability of the data design back

through to the specification and requirements, use of strongly typed languages (to help prevent inappropriate

low-level processing of data), inclusion of data use analysis in the static analysis of safety-related software,

demonstration that the actual data to be used had the properties required for safety and use of representative data

in validation tests [35].

The guidance given in Def Stan 00-55 focuses purely on how data is handled within a safety-related system.

Beyond including “the procedures for and format of any parameters or data to be entered by the user” in the

appropriate user manual [34], there is no guidance on how data should be prepared, or how the safety properties

of data were verified.

4.1.5. IEC 61508 (1998)

While Def Stan 00-55 was a fairly prescriptive standard, IEC 61508, Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-related Systems, is more goal-based
1
. It makes little

distinction between data and software, which it defines as an “intellectual creation comprising the programs,

procedures, data, rules and any associated documentation pertaining to the operation of a data processing

system” [14]. “Data” and “data processing system” are not defined in the standard. The commonality between

data and software is reinforced by a mandate that the requirements for software design and development “shall,

in so far as it is appropriate, apply to data including any data generation languages” [13].

1
 IEC 61508 was produced in 1998-2000, but has subsequently been adopted as a European and British Standard.

The BS EN version dated 2002 is cited in this report, which introduces minor corrections to the original text.

10

Despite this focus of IEC 61508 on data as a component of software, in Part 2 it considers the need for hardware

to prevent data errors, by ensuring that data is stored, retrieved, communicated and processed without

(undetected) errors [12]. Guidance on achieving this is given in Part 7, which summarises many suitable

techniques for detecting such errors [15]. Part 2 also places a specific requirement on the calculation of the

probability of undetected failures of a safety function due to data communication issues. In placing this

requirement, it gives a list of types of data error that could be introduced by communication [12].

It is not clear that the majority of IEC 61508 software lifecycle, described in Part 3, is particularly applicable to

data, although section 7.9.2.13 gives requirements for data verification. This includes verification of structures

of data, application data and modifiable parameters and the hardware and software associated with any data

interface [13]. No guidance is provided on how these requirements might be achieved, and there is no mention

of the processes used for preparing data. The software lifecycle may be usable for data that is produced at the

same time as the rest of the software, or only modified in line with the software modification process, but it does

not appear to be very applicable to data that is modified more often than the software. The implication is that

when data is changed, the software (including the data) will require re-verification. This may include static

analysis or, during later lifecycle stages, testing [13]. Even with a single data configuration, it is unlikely to be

feasible to test all possible combinations of inputs [9, 31].

4.1.6. SW01 (2003)

SW01, Regulatory Objectives for Software Safety Assurance in ATS Equipment, forms part of the Civil

Aviation Authority’s requirements for Air Traffic Services Safety [26]. It sets regulatory objectives for software

safety. The standard is goal-based, requiring arguments and evidence to demonstrate that software is safe and

referring out to other standards for guidance on how this might be achieved. It includes data in its definition of

software, both that contained within programs and that on external media, if the data is necessary for the safe

operation of the system. Despite this implicit acknowledgement that data issues may lead to unsafe operation,

data does not appear to be included in the definition of a software fault, which is limited to defects in the

program code. The only explicit requirement for data is in a sub-goal that requires that “the arguments and

evidence, for the safety of the software in the system context, are from: a known executable version of the

software and a known set of software products, data and descriptions that have been used in the production of

that version”. This implies that SW01 assumes data will be static for a given version of approved software.

While this may be true for some slowly changing data such as geographical information, it is unlikely to hold for

more frequently changing data like airline flight schedules. However the approach seems consistent with DO-

178B (under which field loadable software, including data, should be certified).

4.1.7. Def Stan 00-56 (2007)

Issue 4 of Def Stan 00-56 superseded Def Stan 00-55, but took a radically different approach. Rather than being

prescriptive, it is goal-setting. It gives generic requirements for safety to be demonstrated, for any type of

system component (including data [36]).

The guidance part of the standard includes a section on the safety of systems containing “Complex Electronic

Elements” (CEE). These elements include “databases, spreadsheets and other data” and “all forms of

electronically executed algorithm(s) and associated data (such as configuration data, digital maps, lookup

tables)”. This guidance recommends that such elements should be subject to hazard analysis and have safety

requirements, including integrity requirements, flowed down to them. There is then a discussion of the evidence

that might be appropriate. In line with the goal-based philosophy of the standard, this is limited to types of

evidence, rather than specific techniques [37].

4.1.8. Def Stan 00-56 Supporting Guidance (2008)

Subsequent to the withdrawal of Def Stan 00-55, the Ministry of Defence commissioned guidance [38] to assist

contractors in producing safety justifications for Complex Electronic Elements (CEE) that would comply with

the goals of Def Stan 00-56 Issue 4, as the guidance already contained in the standard was not perceived to be

11

sufficient. The pre-release version obtained by the author has a specific section on the Management of

Assurance of Data and Communications. It categorises data as look-up tables, configuration data,

communicated data and data that is input or output (including via human/machine interfaces). This data is

considered part of the CEE, and as such should be subject to assurance processes to give confidence that it is

adequately safe. The guidance suggests that for both the data itself and the lifecycle processes associated with

the data, safety requirements should be set, hazard analysis should be performed, and the risks controlled.

The CEE Guidance also suggests specific types of safety requirement that might be appropriate for data, from

which a list of classes of data error may be derived, as shown in section 6.3.3. It does not however propose any

particular types of analysis technique as being specifically relevant to data.

4.1.9. Def (Aust) 5679 (2007)

The draft version of Issue 2 of Australian Defence Standard 5679, Safety Engineering for Defence Systems [10],

explicitly recognises data safety issues. It includes “any system used to compute, compile, store or present data

used to inform a safety-critical system” in its list of systems that are safety-critical and specifically recognises

the contribution of “customisation data” to the safety case. Customisation data is defined as “data used to

configure a system or component”.

The draft standard requires -

• Design assurance activities during the installation process to ensure the correctness of customisation

data;

• The architectural description to describe all uses of customisation data, and all tools used to produce it;

• Well-defined data format specifications and functional requirements for customisation data used by

software; and

• A design verification that establishes that any instance of customisation data that satisfies these format

and functional requirements will result in a safe component;

These requirements appear useful, although the final requirement may be hard to satisfy. The standard does not

offer guidance on setting functional requirements for data and it may be hard to define safety requirements that

are verifiable at design time. For instance, targeting data for a weapon system may be correctly formatted and

represent a valid location, but be safe or unsafe depending on what occupies the targeted location at the time the

weapon was armed. The standard does not seem to draw any distinction between configuration data that might

be expected to be prepared once, then left largely unchanged, and more frequently changing operational data.

The requirements seem to be worded more for the former type, but the inclusion of “weather conditions data”

amongst the examples of customisation data hints that faster changing data is also within its scope.

It is interesting that there is no requirement for hazard analysis at the data level, hazards mainly being considered

at the system level. The standard appears software-focussed and this philosophy presumably arises because

software should not contain any known faults (assuming bugs are fixed on discovery). In contrast, data can often

be expected to contain faults, e.g. due to interference on communication links.

4.1.10. GEIA-STD-0010 (2008)

GEIA-STD-0010 is a draft standard prepared by the G-48 System Safety Committee of the Information

Technology Association of America’s GEIA Group, an industry group representing companies servicing the US

Government [16]. It is intended as a replacement for MIL-STD-882D. Version D of the MIL-STD had removed

many of the prescriptive tasks found in previous versions, taking away the best practice element of the standard.

MIL-STD-882D does not refer to data (in the context of this report) at all, although it does require hazard

analysis of software [39].

12

Data is considered in GEIA-STD-0010 mainly as a type of asset – something that might be harmed by an

accident. While this concept is useful in some respects, it will only drive safety analysis of the hazards to data if

that data is already recognised as safety-critical. This may mean that data is omitted from the first pass of

analysis. It also does not address situations where data is unharmed, but could still be hazardous. The standard

does include “processing of safety critical data” as an area of software functionality that could contribute to a

mishap, and says that this should be thoroughly analysed. However, this seems to be focussed on the processing

of the data by software, not its correctness or content. Suggested areas for assurance of software integrity

include verifying that data is used as specified and consistently, evaluation of data errors and protection of data

from over-writing. No further guidance is given on how these might be achieved [16].

4.2. Published Papers

In 2000, Faulkner, Storey et al. commented on the safety management of data-driven safety related systems [18].

Their paper suggested that once data had been identified as an element of a safety-related system, it could be

managed using “established safety management tools and techniques”, but that guidance on such techniques is

lacking in standards such as IEC 61508, Def Stan 00-55 and CENELEC prEN 50128. They identify that data

errors can be both random (e.g. due to hardware failure) or systematic, and may be analysed either at the level of

data types or individual data elements. They propose using a variation of Failure Modes and Effects Analysis

for hazard identification and suggest range and consistency checks as examples of techniques which can manage

certain classes of data error, once a potential hazard has been identified. The paper also suggests general

requirements for the design of data structures and the processes used to produce, manipulate and test the data

itself.

The focus throughout [18] is on configuration data. This is characterised in the paper as a static representation of

the real world, as contrasted with dynamic data derived from human or sensor input. The paper seems to advise

that the configuration data should be prepared at design time using suitable techniques to ensure safety, and then

largely left unchanged. Although it recognises that there may be changes in the real world, which should be

reflected in data, it does not suggest any method for such changes to be managed.

In 2001, Faulkner and Pierce [19] attempted to provide further guidance on suitable techniques for managing

data once it has been identified as safety critical. Using the example of railway interlocking systems, the main

concept of their paper is a division of configuration data into geographical elements and those elements which

can be considered as programs written in a “limited variability language” defined by the system application.

Traditional techniques can then be applied for the safety analysis of these programs. While the geographical

data is regarded as static they note that modifications to the physical railway network must be reflected in the

data used by multiple systems. Citing Harrison and Pierce [27], Faulkner and Pierce give nine classifications of

error found in the data used to describe railway control systems and makes a distinction between detectable and

plausible errors. While a system is able to deduce the presence of detectable errors, plausible errors can

normally only be detected if the correct value of the data is already known.

To help increase the range of errors that are detectable, Faulkner and Storey introduce the concept of a data

model in their 2001 paper [20]. Increased detection is achieved by structuring the model such that consistency

checks can be made to identify errors in otherwise plausible data. The data model is designed with data

validation in mind, and includes built-in rules to support this checking. Faulkner and Storey cite Welbourne and

Bester's division of data into calibration, configuration and functionality data [53], and develop this into a

generic data model including a description of the application instance, a command schedule, a description of the

system's current status and a set of operating conditions. Faulkner and Storey [20] also identify a further set of

five types of data error relating to data from external sources, in addition to those they previously cited from

Harrison and Pierce. By considering these potential errors in the analysis of the data model, they intend that the

model can be structured to allow avoidance of safety-related failures.

Tillotson [52] wrote in 2001 about safety-related management information systems in general, making some

useful observations with respect to data. He points out that generation of data may often be divorced from its

use, potentially with a large number of intervening systems. This has several implications. Those responsible

13

for generating the data may be unaware of the use to which it will be put or any associated risks. Hence they

will not necessarily treat the data in a manner appropriate to its safety importance. Also, those using the data

may be unaware of its original source or the processes through which it has passed. This will reduce the level of

assurance they can gain about the correctness of the data, which should in turn reduce the level of trust that can

be placed in the system.

Tillotson's response to this is to recommend that the data life cycle is explicitly analysed, with a responsible

individual or organisation being identified for each stage. Hazards are identified for each stage (although

Tillotson does not mention any specific identification techniques), and mitigations proposed.

Faulkner attempts to put the data model concept described in his earlier papers into practice in 2002 [17], giving

a railway-based example using the four areas of his data model (application instance, command schedule, status

data and operating conditions), the fault categories mentioned in [27] and [20] and a new set of fault types

concerning status data (which shows some apparent overlaps with the other categories). Potential data faults in

each area are identified, listed by fault type. However, there is no explanation of the hazard identification

process and it is not clear whether the lists of fault types are used as guide words to drive the analysis, or merely

used to classify the identified hazards after a brainstorm.

In the same paper, Faulkner also builds on Tillotson’s work [52], defining a hierarchical model of the railway

enterprise illustrating layers of abstraction from hardware elements up to the corporate level. Each layer has

different requirements in terms of the data they use and the timeframe over which the data is expected to be

valid. The safety impact of low-level changes in data may only be detectable when their effect at higher levels

of the hierarchy is considered. The model also makes the point that different levels in the hierarchy may not

know how the data was prepared at lower levels, or how it will be used at higher levels.

Throughout the various papers referred to above, Faulkner et al. identify that although standards such as IEC

61508 require data to be addressed through a data lifecycle, they contain a lack of guidance on how data should

be structured and prepared to avoid errors. There is an acceptance that data should be prepared in a manner

commensurate with the Safety Integrity Level of the system, but no guidance on how this should be achieved.

In 2002, Storey and Faulkner conducted an informal survey of engineers in safety-related industries to

investigate how safety-related data-driven systems were being implemented in practice [47]. They found that

hazard analysis was not generally being applied to data, resulting in a failure to set integrity requirements or

carry out other actions to mitigate the associated risks. Configuration data was not being produced in a way that

would meet the software lifecycle requirements of IEC 61508 or similar standards. In particular, in many

instances the configuration data could not be validated separately from the rest of the system, but changes in the

data did not result in a whole-system revalidation.

Storey and Faulkner proposed that configuration data should be explicitly highlighted in IEC 61508, by the

inclusion of a data lifecycle that would include the specification, development, production and validation of data.

Separate lifecycle models would be used to highlight the process requirements for the generic system and for

individual configurations [47].

Despite Storey and Faulkner’s survey findings, there is evidence that data is being considered as a potential

hazard area in various different technology domains and that some system developers are taking safety

precautions as a result.

In 2000, Hollow, McDermid and Nicholson had developed a method for attempting to address certification of

reconfigurable Integrated Modular Avionics (IMA) systems [28]. In these systems, multiple avionic systems are

controlled by software tasks running on a shared pool of multitasking processors, rather than separate processors

for each device. An advantage of this type of architecture is that in the event of failures, tasks running on a

failed device may be moved onto other processors with spare capacity. However, there are innumerable

different reconfigurations possible, and it is likely that the certification process will assurance that each

allowable configuration is safe. The allocation of tasks to processors is controlled by a “blueprint” –

configuration data that defines which configurations are allowable.

14

Hollow et al.’s paper implicitly accepts that the configuration data has an important contribution to system-level

safety. It does not describe how the safety of individual configurations are validated, but gives a process that

allows equivalent configurations to be identified, such that when one safe configuration is known, safety

assurances can be read across to other fallback configurations, reducing the workload involved in generating and

validating the blueprint.

A workshop commissioned by the Ministry of Defence (MOD) in 2003 recognised that safety requirements

would need to be developed for IMA systems. These would allow determination of rules for generation of

blueprints. The workshop also questioned whether blueprints themselves would need validation, or whether it

would be sufficient for them to be produced using validated tools [33].

In a different area of aviation, Simpson and Stoker recognise potential hazards caused by data when the note the

challenges of terrain and obstacle data for navigation of Unmanned Air Vehicles [45]

The importance of data is also recognised in the railway domain by authors other than Faulkner and his

associates. In 2003, Frazer et al. described the European Rail Traffic Management System (ERTMS) project

[23], where a similar approach has been taken to that proposed by Faulkner et al. The hazards posed by data

were identified from the inception of the project, leading to the use of an explicit data lifecycle and

categorisation of types of data accorded to factors such as use and data lifetime. The consequences of failures of

different types of error were identified, leading to an understanding that some failures could lead directly to an

accident through a sequence of normal events, whereas others would also require an error on the part of the

human operator of the system. Based on this distinction and the tolerability of the potential consequences,

Safety Integrity Levels are allocated to different types of data. The paper then describes in generic terms the

definition of a data supply chain, giving guidance on implementation, tools and techniques and interpretation of

standards including IEC 61508, Def Stan 00-55 and RTCA DO-178B.

In 2006, Short examined the safety assurance of railway interlocking data [44]. His paper describes the data

preparation process, identifying the points at which errors may be introduced and error checking can be

performed. Like Faulkner, Short recognises that because data is viewed differently to software by developers,

standards such as IEC 61508 or the railway-specific EN 50128 are not applied to its preparation. He suggests an

approach to gaining assurance that the data is correct through a combination of four methods: testing, inspection,

data flow analysis and formal proof.

In his 2007 masters report, Templeton analyses the requirements of Def Stan 00-55 and finds that its

requirements for software can be applied analogously to the safety management of data. However, he identifies

that there is a need for various complementary types of evidence, to give confidence in the argument for the

safety of the data. A particular gap he identifies lies between formal software specifications and implementation

of data structures. He proposes filling the gap with a new formal specification language for data structures

which would give traceability to requirements and support rigorous analysis and testing [51].

4.3. Summary of Literature

Many of the published papers in the area of safety of data have been written by Faulkner, Storey, or both. The

central theme of their work is that there is a lack of guidance in standards to support analysis of the contribution

of data to safety. While most current standards for software or systems safety do not explicitly deal with data as

a specific topic, there is a growing, if fragmented, body of work giving guidance on how to manage the safety

impact of data.

DO-200A is a standard explicitly dedicated to data and appears to have some utility outside the aviation domain

for which it was written. Storey and Faulkner have demonstrated that the lifecycle approach of IEC 61508 could

be developed and extended to cover data explicitly [47], and a similar lifecycle approach has been used by

Frazer et al. [23]. Templeton has shown that Def Stan 00-55 can be applied to the production of data and

described detailed techniques for specifying data structures in a formal manner [51]. Assurance of data is now

included as a specific area of concern in the new guidance supporting Def Stan 00-56 [38] and as specific

requirements in Def (Aust) 5679 [10].

15

However, all of the literature reviewed considers data during its lifecycle: preparation, communication,

processing and eventual use in a system. The focus is on ensuring that data structures and individual data

elements are correct and unmodified. Despite exhortations that hazard analysis should be performed on data,

none of the material reviewed by the author appears to offer any guidance on how this might be carried out. In

those areas where data has been identified as possibly hazardous, this appears to have been “obvious”. There

appears to be a gap in the literature for a bottom-up method of identifying what could go wrong with data that

would be potentially hazardous.

16

5. Discussion

5.1. Definition of Data

It can be hard to define precisely what is meant by data. The definition given by IEC 2382 is a good starting

point: “a reinterpretable representation of information in a formalized manner suitable for communication,

interpretation or processing”. It is useful to consider the elements of the definition in turn.

“Reinterpretable” implies that data is designed to be used. It also implies that data is non-transient. It must

persist for some time to allow its interpretation. “Representation” implies that data is not pure information in

itself, but a construct that has been deliberately prepared. “Information” is defined by IEC 2382 as “knowledge

concerning objects, such as facts, events, things, processes, or ideas, including concepts, that within a certain

context has a particular meaning”.

Taking these elements together, we can distinguish between data and real-world information. Real-world objects

have attributes or properties, such as temperature, mass, position, etc., which may either be static or change over

time. Once these values have been measured and the information taken into a system, the information becomes

divorced from its real-world source, and can be considered data. This gives rise to the first generic failure mode

of data: that its meaning may be incorrect with respect to the real object that it represents.

The next element in the definition of data is the “formalized manner suitable for communication, interpretation

or processing”. “Formalized” has the implication that data should have some particular format or syntax. It also

implies a second generic failure mode: that the representation of the data, rather than its meaning, may be flawed

and unsuitable for use.

While data is often thought of in terms of programmable electronic systems, it should be noted that nothing in

the above definitions is specific to either electronic systems or software. The concept of data is applicable to

systems in general that work with information, regardless of the technology used to implement them.

In the rest of this report, “data element” is used to refer to a representation of a single unit of information. A

group of such elements present in a system at a given time is a “data set”. Data elements may be transmitted as

a “data packet” or in a continuous “data stream”. Data packets and streams may contain partial or complete data

elements or sets.

5.2. Taxonomy of Data Types

The author set out to derive a taxonomy for types of data but, after reviewing literature in the field, came to the

conclusion that only broad classifications can usefully be made. Beyond this, data appears to have various

properties or characteristics which vary independently, making a rigid taxonomy unhelpful.

Data can be divided into three broad categories, according to the type of information it holds: objective

(describing a system’s environment), intent (describing how a system will behave), and third party (of no

direct relevance to a system).

17

Data

Objective

data
Intent data

Third party

data

Metadata

Figure 1. Decomposition of types of data.

The classification of a particular piece of data is dependent on viewpoint. A computer program may be seen as

intent data by the system intended to run it, but objective information forming part of the environment of another

system. Equally, either objective or intent data may be processed or communicated as third party data through

various systems before reaching its end user.

5.2.1. Objective

Objective data carries information about objects, both internal and external to the system. The word “object” is

used to refer to not just physical objects but, as per IEC 2382, facts, events, things, processes, ideas and

concepts. Objective data describes the system and the world it inhabits. Examples of could include a railway

timetable, an address book, a ship loading model, or a navigational chart. Configuration data that describes how

a system is configured (e.g. what physical hardware is present, how nodes are connected together) is objective.

Objective data may be hazardous if it does not accurately represent the information in question, because systems

will make decisions that do not reflect the real state of the world. Data may be incorrect through flawed initial

preparation. It can also become incorrect over time, either due to modification (intended or otherwise) or due to

the real-world object changing.

An important sub-category of objective data is metadata. Metadata is data that represents information about

data itself. Metadata can be used to describe the type of information that a data value represents, its format,

where and when it originated and what its qualities are. Since metadata describes real-world objects (other data

elements), it can be considered objective data. However, the objects that it describes may be objective, intent or

third-party data.

5.2.2. Intent

Intent data tells a system how to behave. It does not correspond to any object outside the system, so cannot be

directly verified. It might consist of parameters, instructions, rules or algorithms and might affect either the

functional or non-functional behaviour of the system (what it is supposed to do, and how). Intent data ranges

from very simple boolean configuration options, to complex programs. Using this definition, most software

could be considered intent data. Configuration data that determines how a system should be configured, such as

an IMA blueprint, is intent data.

There is some cross-over between objective and intent data. For instance, a definition of a communications

protocol could be considered both objective data about how external objects will react and intent data about how

a system should behave to interface with those objects.

18

5.2.3. Third Party

Third party data refers to data that is not used by a system, but is passed through as a payload. Although this

data has no direct safety impact on the local system, there may be safety implications for client systems that use

the data. For this reason, system designers need to know the safety requirements for third party data, so that they

can ensure that a sufficient level of integrity is preserved. An example of third party data would be the messages

passed through a communication system.

5.3. Data versus Software

While IEC 2382 and the discussion in section 5.2 has considered software as a sub-classification of data, many

of the other standards included in the literature review have included data in part of their definition of software.

The situation is confused by the existence of programming languages such as Lisp, where the same structures are

used to represent both program code and data, and data transfer formats such as JSON, which uses an executable

subset of the Javascript language to represent data values [1]. It is worth examining this relationship in more

detail.

Although software can be considered a representation of information (and hence data), it also forms part of the

definition of a system. In standards such as DO-178B and Def Stan 00-56, which require configuration

management, changes to software are counted as changes to the system, and as such would require safety

assessment. When considered in this regard, intent data is considered “software” if it changes the basic function

of a system, or “data” if it does not.

The distinction provided above is fairly arbitrary. In reality there seems to be a continuum between what might

be considered “pure software” and “pure data”, depending on the level of integration between the data and the

information. Examples of different levels of integration are given in Table 1.

Level of integration Description

Offline Human interaction required for any use of the data by a system. E.g. hard copy charts

or look-up tables.

Loadable Data is stored externally to the system, but is available via a removable storage medium

or communication link. The data must be presented to the system for use, e.g. by

inserting a card or disk.

Configurable Data is stored within the system, but is logically separate, and may be modified. E.g.

software configuration files.

Pre-configured Data is logically separate from procedure at design time, but is fully incorporated in the

system and cannot be separated from it. E.g. header files defining constants that are

compiled into software.

Implicit Data is implicit in the definition of procedures. E.g. string literals or constant values

hard coded into algorithms.

Table 1. Levels of integration of data into a system.

At the loosest level of integration, the system cannot directly use the data, and must request it through an

intermediary. While the implications of how the data is used may not be obvious, such data is obvious as an

input to the system.

At the tightest level of integration, the direct effect of the data on the system will be more obvious, but it may not

be apparent that the data is in fact data, rather than simply a part of the system design. This may mean that the

link between the data and the real world information it represents is not recognised and preserved.

The level of integration of the data has implications for the assurance of its integrity. The tighter the data is

integrated with the design, the more likely it is to be included in the formal system development programme, and

hence exposed to safety assessment.

19

Level of integration does not however correlate with the level of influence of data on the behaviour of a system,

and hence its potential to be hazardous. Software loaded via external media or communication links (e.g.

viruses) can still affect the functionality of a system.

5.4. Sensor Input, Communications and Rate of Change of Data

Many systems gather information from sensors and it could be asked whether there is a difference between this

type of information and the information provided by data. If the information is used directly by the system, and

not stored or communicated, then it does not form data. If the information is represented in a reinterpretable,

formalised form, then it would fall within the definition of data. In some cases there may be little benefit in

giving such data special consideration, as sensors form part of the basic functional design of a system, and

engineering in general has long focussed on constructing systems that respond correctly to their inputs.

However, when sensor data is communicated to other systems or stored internally for later use, it is within the

scope of this report. An example is in learning systems, which build up a database of information as they

operate. These systems may suffer from latency, when the data they have gathered becomes out of step with the

real world. Anecdotally, some cars with early computerised fuel injection systems only measured air pressure at

start-up. They would stall if driven to a significantly higher altitude, as the recorded value no longer gave the

correct fuel/air mix for the local air pressure.

This example raises the question of rate of change of data. If real-world information changes slowly, then data

may remain valid for a long period of time without update. In this case, it may be practical to put a large degree

of effort into assuring that the data is correct, and that the system will function safely with those data values. It

also becomes practical to integrate the production of the data tightly into the system development process.

If the information changes rapidly, then data must be updated frequently in order to remain valid. This is likely

to mean that it is not practical to integrate production of the data into the system development, as it becomes

impractical to revalidate the system for each new iteration of data. It may also reduce the range of measures that

are cost-effective for assuring that the data is correct. This is particularly relevant in the case of sensor data, or

data received over communication links. This may change frequently, and will not be available at design time.

As well as the frequency of changes to information, it is important to consider the magnitude of the variation.

Some types of information vary continuously, such as those representing physical quantities (e.g. temperature).

If such information is varying slowly, then data about it may continue to be valid for some time before becoming

unacceptably inaccurate. Other types of information are discontinuous and, although they may change

infrequently, the slightest change may render the data totally invalid. E.g. a single-bit change in the address of a

network node would make that node unreachable.

With continuously varying data, it is therefore necessary to consider how much the underlying information

would be allowed to change before the data became unacceptable, and hence the necessary update rate for the

data. With discontinuous information, more thought must be given to how to ensure data reflects important

changes. Changing the sampling rate may not be the most efficient way to achieve this, but a potential approach

is to consider how long the system can tolerate using incorrect data.

It is also possible that the rate of change of information may vary. In a military context, data that might

otherwise be expected to change very slowly, such as the location of political boundaries or infrastructure like

bridges, may change very quickly due to battle damage. Similar effects might occur due to natural disasters,

such as the Indian Ocean tsunami of 2004. In other contexts, a change of the operational environment of a

system may require data to be sampled at a different rate.

5.5. Preparation of Data

During initial system development, configuration and test data will generally be produced by or with the

assistance of the developer. At this stage, the developer has the opportunity to fine tune the data to ensure that it

is correct and that it will work safely with the rest of the system. The developer also has great familiarity with

20

the intended use of the data and the way that this use is implemented by the system, potentially allowing data

faults to be unconsciously avoided. However, once the system is deployed, the developer often has little further

involvement with subsequent production of configuration data [47]. This raises the question of how sensitive the

system is to subtleties in the data it uses. There is the potential that user-developed data which may superficially

appear valid may cause unexpected problems at the system level.

Once a system is deployed, how data is prepared can vary greatly. In some industries where there is tight

regulation or strong vertical integration between suppliers and end users, the system designer may be able to

have a strong influence on the data preparation process. In such situations it may be possible for data

preparation to remain part of the formal software lifecycle process.

In many areas it is more likely that there will not be strong organisational links between the designer and end

user. However, designers can use a variety of techniques to retain control of the data:

• The data could be preconfigured, tested and validated for a particular application instance, which is then

not user-modifiable. This could be used to customise a system for a particular customer on

commissioning.

• User input could be restricted to a limited set of data values, e.g. by physically constraining the input

mechanism. If the set of values is small enough, it may be possible to test that all possible combinations

are safe.

• More freedom can be given to the user by defining constraints on safety, which are implemented in the

system, allowing the data to be checked for safety at runtime.

In many situations, the designer has very little control over the preparation of input data so must assume errors

will occur. Factors such as transmission errors or hostile action (not just a military concern in these days of

terrorism and crime), may mean that faults in data can be expected on a regular basis, and systems must be

designed to safely tolerate them. System designers must therefore aim to ensure that all potential hazardous data

faults are detectable and recoverable. To guide this work, a useful tool would be a checklist or taxonomy of data

fault types, to steer the hazard identification process.

5.6. Data and Risk Analysis

Traditional risk analysis is based on probability and a model that assumes that unwanted events are caused by

failures or conditions that occur with a known random distribution. This model does not appear to be necessarily

valid for systems whose behaviour is determined by data.

Some data processes will generate random errors, such as measurements of physical quantities, or transmission

of a data stream over a lossy communications link, but other faults in data may be systematic, or unpredictable

but without a statistically random distribution. Mechanisms exist for these problems to cause unsafe conditions,

in the form of subtle data value faults that cannot be detected due to their plausibility.

Similar issues exist with software, where it can be argued that all faults are systematic, and the randomness of

the outcome is only due to the randomness of the input parameters. However, it is normally possible to at least

partially verify software before run-time.

Real data may not be available until run-time, which may mean that only limited testing and verification can be

performed. Systems can perform run-time checks for consistency or formatting, but in many cases may need to

rely on trust that the values they have been provided with will be safe.

21

6. Taxonomy of Data Faults

6.1. Generic Data Faults

The definition of data given in section 5.1 lead to several generic failure modes for data:

• Meaning incorrect with respect to real-world data. This can be caused by flawed preparation, or either

the data or the real-world value changing after preparation of the data.

• Format incorrect. This can be caused by either flawed preparation, the data being changed (corrupted)

after preparation, or the required format of the data changing without update of the data.

These failure modes are too generic to be of much practical use, but serve as high level categorisations.

6.2. Existing Fault Taxonomies

Many of the standards and papers included in the literature review contain descriptions of different types of data

fault or issue. These are listed in this section for comparison.

6.2.1. Beizer’s Bug Taxonomy

In 1990, Beizer published a hierarchic taxonomy of software bug types along with statistics on the proportion of

each type in a sample of over 16000 bugs recorded prior to 1989. The taxonomy was updated by Vinter in 2001,

who added new statistics covering nearly 1000 further bugs recorded between 1992 and 1998 [5].

Bugs relating to data were included as one of Beizer’s nine top-level categorisations. The category was sub-

divided into two areas: Data Definition, Structure & Declaration; and Data Access & Handling. Many of the

lower-level items in the taxonomy are more relevant to how data processing is implemented in software, but a

number relate to bugs in the data itself and hence are of interest here. These are shown in Table 2.

Category Description

4212 Wrong type: object type is incorrect for required processing: e.g., multiplying two strings.

4214 Type transformation: object undergoes incorrect type transformation: e.g., integer to

floating, pointer to integer, specified type transformation is not allowed, required type

transformation not done. Note, type transformation bugs can exist in any language, whether

or not it is strongly typed, whether or not there are user-defined types.

4216 Scaling, units: scaling or units (semantic) associated with object is incorrect, incorrectly

transformed, or not transformed.

4234 Constant value: incorrect constant value for an object: e.g., a constant in an expression.

4262 No such resource: referenced resource does not exist.

4264 Wrong resource type: wrong resource type referenced.

4281 Wrong object accessed: incorrect object accessed: e.g., "X := ABC33" instead of "X :=

ABD33."

4282 Access rights violation: access rights are controlled by attributes associated with the caller

and the object. For example, some callers can only read the object, others can read and

modify, etc. Violations of object access rights are included in this category whether or not a

formal access rights mechanism exists: that is, access rights could be specified by

programming conventions rather than by software.

4283 Data-flow anomaly: data-flow anomalies involve the sequence of accesses to an object:

e.g., reading or initializing an object before it has been created, or creating and then not

using.

22

4284 Interlock bug: where objects are in simultaneous use by more than one caller, interlocks

and synchronization mechanisms may be used to assure that all data are current and changed

by only one caller at a time. These are not bugs in the interlock or synchronization

mechanism but in the use of that mechanism.

4288 Object boundary or structure: access to object is partly correct, but the object structure

and its boundaries are handled incorrectly: e.g., fetching 8 characters of a string instead of 7,

mishandling word boundaries, getting too much or too little of an object.

Table 2. Selected categories from Beizer's Bug Taxonomy [5].

Data bugs in general made up 22% of Beizer’s statistics and 8% of Vinter’s. The proportions of bugs allocated

to the “interesting” categories listed above were as shown in Table 3. Note that categories in which no bugs are

found are not shown in the table.

Cat. Description No. bugs found % bugs found

 Beizer Vinter Beizer Vinter Total

4212 Wrong type 10 1 0.1% 0.1% 0.1%

4214 Type transformation 84 0.5% 0.0% 0.5%

4216 Scaling, units 237 4 1.5% 0.4% 1.4%

4219 Other type bugs 28 0.2% 0.0% 0.2%

4281 Wrong object accessed 244 22 1.5% 2.2% 1.5%

4282 Access rights violation 8 0.0% 0.0% 0.0%

4283 Data-flow anomaly 115 10 0.7% 1.0% 0.7%

4288 Object boundary or structure 115 0.7% 0.0% 0.7%

 Total: 841 37 5.2% 3.8% 5.1%

Table 3. Occurrence of data bugs in software.

Beizer and Vintner’s data does not cover all the types of data fault covered in this section. It also considers all

bugs, rather than just those with safety-related outcomes. However, the fact that approximately 1 in 20 software

bugs were attributed to data issues means that this is a significant area, worthy of research.

6.2.2. Railway Industry Data

Faulkner has assembled various classifications of data errors from the railway domain [17], which are

reproduced below in Table 4 to Table 6.

Omission An infrastructure entity is not present in the control system data set.

Spurious data A non-existent entity is present in the data set, this may also include duplicated entities.

Positioning errors For example an entity is represented and addressed correctly, but its physical position is

incorrect.

Topological errors All entities are present, but they are connected in a way which may be plausible, but

incorrect.

Addressing errors An entity is correctly located and labelled but is connected to the wrong field devices.

Type errors An entity is connected and labelled correctly but is recorded with an incorrect type

identifier.

Labelling errors An entity is located and addressed correctly, but is assigned the wrong label in the data

model.

Value errors A scalar attribute of some entity in the configuration data has the wrong value.

Table 4. Data faults in railway infrastructure data (Harrison & Pierce) [27]

23

Existence A data reference provided by one external information system cannot be fulfilled by

another information system.

Reference error The wrong data reference is provided resolving information which does not represent the

required train.

Availability An external information system is not available (off-line) at the time the information is

requested.

Inconsistent Data requested from more than one external information systems is inconsistent.

Timely Data is not supplied until after the event.

Table 5. Data errors from external errors (Faulkner & Storey) [20]

Mode fault The operational mode for one or more components is incompatible with the current

operational mode.

Sequential fault Data presented to the railway control system is “out of sequence”.

Combinational fault Data presented to the railway control system is incomplete to meet the requirements of a

predetermined condition.

Propagation fault Data transmitted to the railway control system is changed or corrupted on receipt.

Timing fault Data is presented to the railway control system earlier or later than expected by the

system.

Volume fault The railway control system is flooded with or starved of data.

Table 6. Data faults in status data (Faulkner) [17].

It can be seen that there are some overlaps between these classifications. For instance, “omission”, “existence”

and “availability” are functionally equivalent. Although they have different causes, in each case the required

data is missing.

6.2.3. SHARD Guidewords (Pumfrey 2000)

In his doctoral thesis [41], Pumfrey cites classifications of computer systems failures due to Ezhilchelvan and

Shrivastava, and Bondavalli and Simoncini, then develops a set of guidewords for hazard analysis of software.

These guidewords may have wider application to data.

Ezhilchelvan and Shrivastava’s classification is a hierarchy, based on a basic “byzantine” failure, which could

include any type of failure mode. A specialisation of this is “emission”, where the output has the wrong timing,

value, or both. Value and timing faults are the next level of the hierarchy, and the final case is “omission”,

where no service is delivered.

Bondavalli and Simoncini divide failures in to the timing and value failures. Timing can be early, correct, late,

or infinitely late. Values may be correct, subtly incorrect, coarsely incorrect, or omitted.

A key feature of both classifications is the distinction between the time and value domains. Bondavalli and

Simoncini also make a useful distinction between failures that can and cannot be detected by the recipient.

Although these classifications were designed for computer systems in general, they still appear to be useful for

application to data.

Pumfrey went on to develop guidewords, partly based on these classifications, for the Software Hazard Analysis

and Resolution in Design (SHARD) technique, shown in Table 7. This list has the benefit of being very simple,

while addressing three problem domains: provision, value and timing.

24

Omission The service is never delivered, i.e. there is no communication.

Commission A service is delivered when not required, i.e. there is an unexpected communication.

Early The service (communication) occurs earlier than intended. This may be absolute (i.e. early

compared to a real-time deadline) or relative (early with respect to other events or

communications in the system).

Late The service (communication) occurs later than intended. As with early, this may be absolute or

relative.

Value The information (data) delivered has the wrong value.

Table 7. SHARD Guidewords [41].

6.3. Fault Taxonomies extracted from Standards

Many standards either give a description of desirable properties of systems, or particular hazards that should be

guarded against. By extracting these, further (partial) taxonomies may be derived.

6.3.1. IEC 61508

Part 2, Section 7.4.8 of IEC 61508 requires a system designer to take into account the following types of error in

data communications [12]:

• Transmission errors

• Repetitions

• Deletion

• Insertion

• Resequencing

• Corruption

• Delay

• Masquerade

6.3.2. DO-200A

According to Faulkner, DO-200A provides seven “qualities” of data: Accuracy, Resolution, Assurance Level

(confidence that the data is not corrupted while stored or in transit), Traceability, Timeliness (level of confidence

that the data is applicable to its intended period of use), Completeness and Format [21].

Each of these qualities could be the basis for setting a safety requirement. By negating each quality, a list of

associated faults may be generated that could lead to hazardous consequences:

• Inaccurate data value

• Insufficient data resolution

• Data altered after preparation

• Unknown provenance

• Untimely data

25

• Incomplete data

• Incorrect format

“Data altered after preparation” would mean that the true provenance of the data was not known, and could

result in any of the other types of fault. Although “unknown provenance” of data does not immediately imply a

hazardous condition, failure to be able to trace the data back to its source may lead to decisions being based on

inappropriate data, such as default values, training or test data that had been allowed to leak onto a live system.

6.3.3. MOD CEE Guidance

In the Ministry of Defence’s guidance on Safety Assurance of Complex Electronic Elements, Section 2 gives

example safety requirements for data. These include valid data types, ranges, relationships, and timeliness [38].

As with the DO-200A qualities, these may be negated to give the following fault types:

• Type errors

• Range errors

• Incorrect relationships between successive data items (e.g. sequence numbers skipped or out of order)

• Untimely data

• Invalid relationships between different data items (such as whether a date of 31 is valid in a particular

month);

• Invalid relationships between data items and the state or internal data of the CEE (for example in a

database application, the data item must exist in the database before a request to delete it can be

processed).

In addition, the guidance specifically highlights a further set of failure modes specific to data communications:

• Corruption (random and systematic)

• Repeated receipt of data

• Loss of data (random, systematic, and permanent)

• Data delayed (variable or consistent delays) or out of sequence

• Deliberate attack (e.g. denial of service, viruses or jamming)

6.4. A Combined Data Fault Taxonomy

The fault taxonomies presented in sections 6.3 and 6.4 provide 61 candidate fault types. Within these types there

are a number of duplications and several areas where similar category names have different meanings. They

have been combined into a new taxonomy for use as a checklist for hazard identification, shown in Table 8.

A hierarchic organisation was used to give a balance between brevity, for simplicity and ease of understanding,

and comprehensiveness, for effectiveness as a checklist. For this reason, four basic categories of fault have been

chosen, and the hierarchy developed to identify specialised forms of faults that might not otherwise have been

apparent. The indentation in Table 8 indicates levels of specialisation.

26

Serial Fault Category Description

1.0.0 Meaning Meaning of data incorrect

1.1.0 Value Value of data incorrect

1.1.1 Meaningless Value not capable of interpretation

1.1.2 Inaccurate Value valid but wrong

1.1.3 Association error Value correct, but referring to wrong object

1.2.0 Insufficient resolution Data does not reveal artefacts of interest

1.2.1 Aliasing Data implies non-existent artefacts

1.3.0 Ambiguity Data not capable of consistent evaluation.

1.3.1 Multiple interpretation Data can be understood to mean different things

1.3.2 Violation of uniqueness Data refers to multiple objects, instead of one.

1.3.3 Lack of precision Uncertainty in measurement of data

1.4.0 Inconsistency Disagreement between data items

1.4.1 Between instances of same data e.g. different sources of same information differ

1.4.2 Between successive data items e.g. sequence or pattern not followed

1.4.3 Between different data items e.g. mutually exclusive configuration options

1.5.0 Omission Element left out of data set

1.5.1 Incomplete data Required data partially missing

1.6.0 Commission Additional elements in data set

1.6.1 Repetition Element inadvertently repeated in data set.

1.6.2 Data overrun Unrequired partial data additional present

2.0.0 Format Data is not formatted correctly

2.1.0 Wrong scaling or units Data uses wrong measurement units

2.2.0 Wrong datum Measurement not made from correct baseline

2.3.0 Wrong type Data uses incorrect physical representation

2.4.0 Data out of range Data value out of range for data type

2.5.0 Wrong language Wrong human or software language used

2.6.0 Wrong grammar Data violates grammar or syntax rules of format

2.7.0 Data out of sequence Data elements incorrectly ordered

3.0.0 Timing Data does not arrive at the correct time

3.1.0 Omission Expected data does not arrive from source

3.1.1 Availability Data source cannot be contacted

3.1.2 Existence Data source does not have data

3.1.3 Access Data source will not grant access to data.

3.1.4 Loss Data is lost en-route from source

3.2.0 Commission Unexpected data arrives

3.2.1 Repeated receipt of data Expected data arrives more than once

3.3.0 Early Data arrives earlier than expected by system

3.4.0 Late Data arrives later than expected by system

3.4.1 Validity exceeded Data arrives later than expected by preparer

3.5.0 Data out of sequence Data elements arrive in wrong order

4.0.0 Provenance Data not from desired source

4.1.0 Masquerade Data not from identified source

4.2.0 Unknown provenance Source of data cannot be identified

Table 8. A new taxonomy for data faults.

The original 61 fault categories have been refined and new categories added, resulting in 43 new categories

organised in four broad areas. The “meaning” and “format” faults identified from the definition of data have

27

been included as top-level faults. To these have been added timing, which is present in most of the other

taxonomies studied, and provenance.

Most of Beizer’s bug categories have been mapped into the new taxonomy, albeit often in more generic

categories. However, “incorrect scaling, units” and “access rights violation” were unique to Beizer’s taxonomy.

“Type transformation” and “interlock bug” were omitted, as they appear to be more relevant to the processing of

data than the data itself and the fault conditions caused by these processing failures if into other categories, such

as “incorrect type” and “incorrect value”.

Harrison & Pierce’s railway infrastructure faults appeared quite domain specific, however they have all mapped

into the new taxonomy. It is notable that Harrison’s “Type” fault maps to a “Value” fault in the new taxonomy,

because it is the value of a reference to a real-world object that is wrong, rather than the data having the wrong

type itself. “Positioning” faults also map to “Value” faults, although these are interesting because the cause of

the fault is the real world being implemented the wrong way, rather than the data. However, the hazard is the

same in either case.

All Faulkner and Storey’s external data faults map into the new taxonomy. This set of faults was useful in

prompting thought about the accessibility of data. It raises questions about whether data exists, whether a source

will provide it and whether the necessary communication links work.

Most of Faulkner’s status data faults map into the new taxonomy, with the exception of “propagation fault”.

This category is too generic, and could be a cause of many different types of fault. “Volume faults” map to a

special case of “early” or “late” data but flooding has not been specifically included. In this case the fault lies

with the inability of the system to process the data, rather than a flaw in the data itself.

Pumfrey’s SHARD guidewords all map into the new fault taxonomy at a fairly high level. “Early” and “late”

have been grouped together under a “timing” category. “Omission” and “commission” have been duplicated, as

they have different interpretations in the meaning and timing domains. In the meaning domain, it is implied that

a data set exists at the correct time for use, but either expected values are not present, or there is additional

unexpected information. In the time domain, omission and commission are interpreted as meaning that whole

messages or sets of data are either missing or unexpectedly present.

Most of the communications factors listed in IEC 61508 map into the new data fault taxonomy, apart from

“corruption” and “transmission errors”, which are too generic to describe the actual problem with the data. An

interesting contribution from this standard is “masquerade”, a violation of traceability where data from one

source appears to be from another, either accidentally or through malicious intent.

DO-200A has been a useful input into the new data fault taxonomy, for introducing a number of relevant areas

that are not directly related to the accuracy of a data value. Faults derived from all the DO-200A qualities have

been mapped into the taxonomy, with the exception of “data altered after preparation” (derived from assurance

level, which gives the level of confidence that data has not been modified in storage or transit). This was seen as

a potential cause of a range of different faults in the “meaning” or “format” categories.

The faults derived from the MOD’s guidance for complex electronic elements are all relevant to data and have

mainly been mapped into the new taxonomy. The guidance was particularly useful in pointing out the various

types of fault relating to associations between data items. These inconsistencies can lead to the detection of fault

conditions that would otherwise appear as plausible data values. “Corruption” and “deliberate attack” have not

been included, as they are potential causes of many different faults, rather than faults in themselves.

The derivation of each fault category is given in Table 9. Appendix A shows in detail the coverage of the new

categories over those given in the source material.

28

Serial Fault Category Derivation

1.0.0 Meaning New category, arising from the generic definition of data and a

need for a broader category than just “Value”.

1.1.0 Value Faults concerning the value of the recorded data are found in most

sources.

1.1.1 Meaningless New category, included to highlight a special case of corruption

where the data cannot be interpreted as any valid value.

1.1.2 Inaccurate From DO-200A. Cases where the value is plausible, but wrong.

1.1.3 Association error Included to capture addressing and labelling errors (Harrison &

Pierce), reference errors (Faulkner & Storey), and wrong resource

type or object accessed (Beizer). These are faults where the data

refers to the wrong object, but is not necessarily incorrect in

reference to the object it was based on.

1.2.0 Insufficient resolution From DO-200A, used here to focus on resolution across the sample

space (e.g. time, distance, count between samples), rather than in

the quantity being measured.

1.2.1 Aliasing New category, introduced to capture resolution issues that create

artefacts, rather than hide them.

1.3.0 Ambiguity New category, introduced to capture the idea that use of data

should be deterministic.

1.3.1 Multiple interpretation New category, where data could have different meanings.

1.3.2 Violation of uniqueness New category, where a one-to-one relationship unintentionally

becomes one-to-many.

1.3.3 Lack of precision Similar to resolution, but focussed on the measurement domain,

rather than sample space.

1.4.0 Inconsistency - Introduced to group relationship-focussed faults.

1.4.1 - between instances of same data From Faulkner & Storey.

1.4.2 - between successive data items From the MOD CEE Guidance.

1.4.3 - between different data items From the MOD CEE Guidance, including Harrison & Pierce’s

topological errors and Faulkner’s mode faults. Deals both with

internal and external data sources.

1.5.0 Omission From Pumfrey, Harrison & Pierce and IEC 61508 (deletion).

1.5.1 Incomplete data From DO-200A, Faulkner and Beizer.

1.6.0 Commission From Pumfrey, Harrison & Pierce (spurii) and IEC 61508

(insertion).

1.6.1 Repetition From Harrison & Pierce (spurii) and IEC 61508.

1.6.2 Data overrun From Beizer’s “object boundary or structure”. In contrast to

incomplete data, surplus partial data.

2.0.0 Format From DO-200A, and the basic definition of data.

2.1.0 Wrong scaling or units From Beizer.

2.2.0 Wrong datum New category, introduced to capture problems where

measurements use different baselines.

2.3.0 Wrong type From Beizer and the MOD CEE Guidance.

2.4.0 Data out of range From Beizer and the MOD CEE Guidance.

2.5.0 Wrong language Introduced to capture differences between dialects, both human and

electronic.

2.6.0 Wrong grammar Introduced to capture faults where the data structure is not properly

constructed.

2.7.0 Data out of sequence Implied by various sources, although most concentrate on sequence

in the time domain, rather than the order of data in a static

29

structure.

3.0.0 Timing Implied by most sources.

3.1.0 Omission From Pumfrey.

3.1.1 Availability From Faulkner & Storey (external data source unavailable).

3.1.2 Existence From Faulkner & Storey (reference cannot be fulfilled).

3.1.3 Access From Beizer.

3.1.4 Loss From the MOD CEE Guidance.

3.2.0 Commission From Pumfrey.

3.2.1 Repeated receipt of data From the MOD CEE Guidance and IEC 61508.

3.3.0 Early From Pumfrey.

3.4.0 Late From Pumfrey, Faulkner & Storey, IEC 61508 and the MOD CEE

Guidance.

3.4.1 Validity exceeded From DO-200A (timeliness).

3.5.0 Data out of sequence From Faulkner, IEC 61508 and the MOD CEE Guidance. Also

implied by Pumfrey (who includes relative timings in early / late)

and Beizer, for data flow anomalies.

4.0.0 Provenance From DO-200A (unsatisfactory traceability).

4.1.0 Masquerade From IEC 61508.

4.2.0 Unknown provenance From DO-200A (untraceable).

Table 9. Derivation of fault categories.

6.5. Discussion of Data Faults

Correctness is dependent on point of view. Data that is “correct” when prepared may not be correct when used,

e.g. a quantity measured accurately in metres may be “incorrect” if the physical distance has changed before the

data is used, or if the user was expecting a value in feet, or a measurement of a different object. Correctness is

therefore relative, and is described in the notes below with respect to the intent of the consumer of the data, at

the time of consumption.

It should also be noted that the faults can be present at different levels of structure within data. Some faults,

such as value faults, may be applicable to a single element of data. Others, such as inconsistencies or data out-

of-sequence, only have meaning when multiple data elements are considered. A fault may also fall into more

than one category, e.g. a wrong value in one element may also be classified as an inconsistency or format fault, if

other data elements are taken into account. It should be an aim of system design that any viable fault in the data

should be capable of being classified in at least one category of detectable fault.

6.5.1. Meaning

The most obvious and important type of fault in data is to do with meaning, the first category in the taxonomy.

The meaning of data is at fault if it is incorrect with respect to the real world, if it does not correctly reflect the

state of the objects in the real world (objective data), or the user’s current intent (intent data). These faults may

come about in three main ways. The data may be prepared wrongly from the start, it may be changed in a way

that makes it wrong, or the real world may change, so that it no longer correctly reflects its subject or intent.

The key component of meaning is the value of the content of a data element. Value faults may be obvious, but

can be subtle, when the presented value is wrong but plausible and hence hard to detect. Much of the emphasis

in safety management of data is to try to construct data structures such that as many potential faults are

detectable as possible. Often this is achieved by using metadata, formatting, or additional knowledge about the

system, so that value faults cause inconsistencies or other types of detectable fault.

Some value faults result in a value has become meaningless (e.g. an undefined character) and are easily detected.

Those faults where an incorrect value has a meaning can be divided into two further types: those where the value

30

is inaccurate, and those where the value is accurate, but does not refer to the object that the user of the data

intended (association faults).

Various methods are available to protect against value faults caused by data changing. Often these involve

adding in redundant information so that inconsistencies can be detected (e.g. duplicate records, or coding

schemes where n-bit errors result in invalid or uniquely identifiable symbols), or metadata (such as checksums

and hashing codes), to check whether some measurable property of the data has been changed before receipt. In

the case of metadata, precautions are strengthened when the metadata can be transmitted separately to the data

itself, removing a potential common cause of failure.

If data is prepared wrongly, there may be little that can be done to detect the fault, unless the same information is

available from an independent source to allow consistency checks. However, formatting can be used to protect

against some kinds of preparation error, and traceability or provenance can be used to give assurance that the

data came from a high quality source.

The hardest value errors to check are those where the real world has changed, leaving the data stale. In these

cases the value remains plausible, but has become incorrect with respect to the user’s intent for what it was

supposed to represent. These subtle faults can be protected against to a limited extent by changing the rate at

which the data is sampled (which has resource implications), or adding validity metadata to the data to reflect the

expected rate of change of the underlying information.

The meaning category of data faults was introduced as a high-level category because there are various

circumstances where a data element may not be “wrong”, but still does not convey the correct meaning. These

include issues of resolution, interpretation and consistency.

The source information may be sampled with insufficient resolution to identify features that are important to a

user. Consider the example of a digital imaging system used for object detection. If the size of the pixels is too

large, small objects will not be detected. Aliasing is a special case of this fault, where the resolution is low

enough that artefacts appear to be present in the data that do not exist in the real world. In the object detection

example, under-sampling a striped object could result in moiré patterns in the image, causing the system to

detect a different shaped object.

Data may also contain ambiguity. A simple example is lack of precision. For the purpose of the taxonomy

presented in this report, precision refers to the value being measured, rather than the sampling resolution. In the

example above, precision would relate to the veracity with which each pixel could represent colour or greyscale

values, and would be dependent on the number of bits used to represent the value. Using the analogy of a

shooting target, precision is the tightness of a grouping, accuracy is how far the grouping is from the centre of

the target, and resolution concerns the spacing of the targets being shot at.

More complicated ambiguities arise when a data value is capable of multiple interpretations, e.g. because a word

in natural language has two meanings. A common area of ambiguity is in representation of numbers in human-

prepared data. e.g. the number “10” could mean two in binary, ten in decimal, or sixteen in hexadecimal. The

precision of the number is also ambiguous, and could be interpreted in decimal as 10 exactly, 10 ± 5, or 10 ± 0.5,

depending on what assumption was made about rounding. A data fault will arise if the user’s interpretation is

different to the preparer’s.

Faults may also occur when references that are believed to be unique, such as addresses or sequence numbers,

turn out to map to multiple objects. In this case, data that may originally have been valid can develop a fault,

through violation of uniqueness.

Data may be correct, but inconsistent with other data. If a piece of information is repeatedly sampled, or

sampled by different mechanisms, there may be inconsistency between instances of the same data. This would

be self evident from the difference in data values in multiple versions of the same data element. Such an

inconsistency could be resolved by a number of methods, including voting, averaging, choosing the data with the

best provenance, or asking for the data to be resent.

31

There may also be inconsistency between successive data items, based on the properties of the physical object

represented by the data. Examples include cumulative values, such as distance travelled, that are never expected

to reduce, or values where the rate of change is limited by physics.

More complicated inconsistencies between different data items may arise, based on the known design of the

system or data model. These can include mutually exclusive options, or disagreement between metadata and the

main data.

While the presence of inconsistency is a data fault, it can be useful, in that it is by definition detectable, and can

be used to allow other types of data fault to be detected. Careful design can ensure that many value faults will

also cause inconsistencies that can be checked for by the system processing the data and dealt with appropriately.

However, such checking requires resources at runtime and may not be feasible, depending on the complexity of

the calculations involved and the required rate of data throughput. In some cases, it may be possible to adjust the

format or content of data structures to make them easier to check, by moving some of the processing burden

from runtime to the data preparation process.

Data may be unexpectedly included in a data set (commission) or left out (omission). Either case may result in

unexpected behaviour of the system processing the data, such as misinterpretation of subsequent data.

Additional data may result in buffer overruns and corruption of data stored internally to the system processing it.

Omitted data could mean that a value relied on by the system is not available. Special cases of these faults are

possible where the omitted or added data elements are not complete. These faults are included in the taxonomy

as incomplete data and data overrun respectively. A further special case of commission is repetition, where a

desired data element is unnecessarily repeated in the data set.

6.5.2. Format

The second high-level category of data fault is format. Faults in the formatting of data may not affect the

correctness of the content of data, but may mean that a system is unable to understand or process the data. This

can be hazardous if the fault is unexpected, however formatting faults can be useful revealing problems with the

preparation of data, or subsequent corruption. Formatting is used to impose rules onto the way information is

represented, and limit the ways in which it is interpreted. These rules can form the basis of consistency checks,

allowing value errors that would otherwise be subtle or plausible to become detectable.

An important aspect of format concerns how quantities are represented. The format needs to specify (or specify

a means of identifying) what units a quantity has been measured in, e.g. metres vs. feet, to avoid mis-

interpretation. It also needs to specify what datum the measurement uses as a reference. In some cases this may

be included in the definition of the units (e.g. Kelvin versus degrees Celsius), but in others it may not be so

obvious. The latitude and longitude of a geographical position within the UK may vary by over a hundred

metres depending on whether the datum used is OSGB36 or WGS84.

Closely related to units is scaling. This refers to the mapping between the representation and a physical quantity,

when the data does not represent the quantity directly. An example would be data representing the output from

an analogue-to-digital converter. The output can be represented as a number, but the number must be scaled to

determine the actual value being measured. Again, the format should either specify what scaling should be

used, or how the scaling should be identified.

Another area that is important to correct interpretation of data is type. This concerns the representation of the

value. E.g. a sequence of eight binary bits may represent eight individual binary values, an unsigned number

between 0 and 255, a signed number between -128 and 127, or various other possibilities. Variations in data

types also include the differences between integer types and floating point types with various levels of precision,

and endianness (concerning the ordering of bits or bytes within the data element). Type faults lead to data that

was written as one type being interpreted as another, causing the wrong value to be obtained.

32

The chosen data type may be able to represent more values than is appropriate for the information being

represented (e.g. a temperature below -273.15 degrees Celsius is invalid). The format should specify the range

of acceptable values, allowing data out of range faults to be detected.

Not all data represents quantities. Format also needs to specify how non-numeric values should be represented

and interpreted. If data includes free text, the language should be specified, to ensure that the system can use the

data. e.g. “colour” (en-gb) and “color” (en-us) may have the same meaning to a human, but the difference in

spelling between American and British English could cause a software-based system to reject the value. It may

be necessary to restrict the allowable values to a limited vocabulary. Language faults encompass failures of

elements of the data to comply with the allowable vocabulary, whether that is defined by a human language, a

machine language (e.g. Ada or the eXtensible Markup Language (XML)), or a subset specific to the particular

format. They are the non-numerical equivalent of out of range faults.

Grammar faults concern the way that values are arranged in data, including syntax, punctuation, and structure.

The grammar of a format will determine how a system can distinguish between different data elements. The

grammar rules for a format may include some elements of sequence, however, data can also be out of sequence

while following correct grammar. This type of fault might arise either when a meaning is derived from the

sequence of data elements (e.g. when it is assumed that a sequence of measurements appear in chronological

order), or where the data represents intent or builds on previous data vales, and it is important that elements are

interpreted in a particular sequence.

6.5.3. Timing

Timing faults relate to the period when data is required for use. Many timing faults are analogous to faults in the

domain of meaning, especially omission and commission. In the time domain these relate to the presence or

absence of bulk data (sets, packets or streams), as opposed to data elements within a set. These faults are

generally applicable to data that is communicated, rather than data that is held statically within a system.

Omission faults can be divided into availability, where the source that is supposed to provide the data is not

available; existence, where the source is available, but does not hold the required data; access, where the source

has the data, but will not pass it to the recipient; and loss, where the data is sent from the source, but does not

reach the recipient. Loss may also occur after receipt of data. These faults may have a number of causes,

depending on context, but will all result in required data being unavailable for processing and use at the time

when it is required.

Commission faults cover cases where extra data is received unexpectedly. A special case is repeated receipt of

duplicate data packets. Commission faults could result in systems using extra processing or storage resources to

deal with the unexpected data, or taking unwanted or nugatory actions if the duplication was not detected.

Data may be early or late, either with respect to the time that it is required for use, or the time that it was

prepared. Data that arrives early for use may be discarded, or be stale by the time it is used. Data that is

prepared early or late may not properly represent the intended object. Data that arrives infinitely late can be

considered an omission. A special case of late data is when data is used beyond its period of validity. In this

case it is likely that a value fault will occur, as the information represented by the data is likely to have changed.

It could be argued that expired validity is early data (i.e. that it was prepared too early to be valid at the time of

use), but the author has taken the view that either the data is so late that it has expired before it is available for

use, or that an update to the data should have been made available, and was late.

When some data is early, and other data late, an out of sequence fault occurs. This may result in the same

problems as the value domain out-of-sequence fault, unless a way of re-assembling data packets into the correct

order is provided.

33

6.5.4. Provenance

In addition to having data with the correct meaning and format, at the correct time, it is important that the data

has the desired provenance. Provenance gives confidence that data has been prepared properly and processed,

stored and communicated in a way that has preserved its key characteristics, such as format, meaning and

timeliness. A provenance fault occurs when there is not a sufficient process argument to give assurance about

the integrity of the data through each stage of the supply chain from preparation to use. A special case of this

fault is when there is no traceability, and hence there is an unknown provenance.

Provenance faults can also occur when data that appears to be from one source is actually from another

(masquerade). This can occur due to a deliberate attack, or accidentally, e.g. when test or training data is

inadvertently injected into a system.

6.6. Use of the Data Fault Taxonomy

The taxonomy proposed in section 6.4 is intended to be used as a checklist to aid hazard identification. In safety

analysis, it is anticipated that a system designer or safety analyst would use it as input to an investigation of what

failings in data could lead to unsafe behaviour at the system level. It can also be used to consolidate multiple

known causes of data issues into groups that can be independently managed.

The high-level taxonomy categories (meaning, format, timing and provenance) would be used as prompts or

guide words during a structured walk through of the data structures used in a system. When a high-level

category had been found to be relevant, the lower-level guide words within that category would be used, in order

to draw out more specific forms of potential fault.

Figure 2 illustrates that a fault may have many causes, and give rise to many hazards at the system level. While

the different causes and system-level hazards could be independently managed through various different

mitigation measures, the fault provides a concept at the right level to facilitate simple understanding and

management of the problem.

Figure 2. Bow-tie diagram showing relationship of causes to faults and hazards.

The taxonomy could also be used by someone specifying the requirements or coding the implementation of a

data format or a system that handled data. It would give a series of prompts as to the types of failure mode that

the system should be required to handle. Similarly, it could aid test case design.

While a single check-list could not hope to identify every specific cause of data-related problems, it is hoped that

the high-level categories presented by the taxonomy are sufficiently generic to encompass all potential faults.

C
au
se
s

S
y
st
em

-l
ev
el

h
az
ar
d
s

Fault

34

7. Data-Related Accidents

In order to validate the new taxonomy of data faults, the author has reviewed accident and incident reports from

a number of sources. This section of the report summarises those accidents and incidents that the author

considered had data-related factors, either in their cause, or how the subsequent sequence of events developed.

It should be noted that for brevity, the précis presented here are greatly simplified, with an emphasis on

highlighting the contribution made by data. Most other contributary factors are likely to have been omitted from

the description, and the reader should make reference to the source documents for a fuller understanding of the

causes of each event.

For each event, the data faults identified have been classified according to the new taxonomy, with the

classification highlighted in bold text. This exercise has sought to show that all relevent contributions can be

satisfactorarily classified according to the taxonomy, and conversely to show that faults in the taxonomy do

actually manifest themselves in the real world.

7.1. Air Accident Investigation Branch Reports

All the précis in this section are based on reports published on the Air Accident Investigation Branch (AAIB)

website [6]. The author reviewed all 31 full investigation reports published by the AAIB from 2001 to the end

of August 2008. Only the two believed to have some relevance to data considerations are précised here.

7.1.1. F-OJHI, Birmingham International Airport, UK

Ref: AAIB report 7/2007

On 23 February 2006 an Airbus A310-304 descended early on a Localiser/DME approach to Runway 33. The

crew aborted the descent at 164 ft above ground level when they received a Ground Proximity Warning System

(GPWS) alert. The aircraft went around and started a second early descent, until being guided onto the correct

course by the air traffic controller. The incident occurred because the wrong Distance Measuring Equipment

(DME) setting was used.

This came about because the Flight Management Computer was using a database that did not contain the

relevant approach path (omission). The crew were required to manually set up the VHF Omni-Range (VOR)

system to use the DME beacon on Runway 33. They did not do this, and the system autotuned to a different

DME beacon. This meant that there was an association fault concerning the DME tuning. As a result, the

distance reported by the DME was being measured from the wrong datum, causing the aircraft to descent early.

7.1.2. G-MEDG, Khartoum Airport, Sudan

Ref: AAIB report 5/2007

An Airbus A321-231 was on its final approach to Runway 36 at Khartoum Airport on 11 March 2005 when the

crew attempted to conduct a Managed Non-Precision Approach using the autopilot. Darkness and wind-blown

sand meant that visibility was restricted. The autopilot used data from the aircraft’s Flight Management and

Guidance System navigation database, but the crew were using a chart produced by a different supplier, on

which the descent point for the approach differed by 0.6 nm. This caused them to believe that the aircraft was

too high for the approach. The pilots overrode the autopilot, then became confused, descending too fast and

necessitating an emergency go-around. The aircraft avoided the terrain by 121 ft.

The incorrect location on the chart was an inaccuracy, and the difference between that data and the navigation

database an inconsistency between different data items. This inconsistency arose partly because the data

supplier had not received a relevant update from the Sudanese authorities, which had been received by the

navigation database supplier (late data or omission, depending on whether the update was eventually received).

The earlier data that the chart was based on had also contained inconsistency between different data items

35

representing the vertical and horizontal approach paths. Although the supplier had detected this inconsistency,

the method they had used to resolve the problem had led to inaccuracy in the published chart.

7.2. Marine Accident Investigation Branch Reports

Ships have long made use of data in the form of charts for navigation. They are now increasingly using

electronic data, in navigation, communications, and to co-ordinate operations such as cargo loading and

movement.

All the précis in this section are based on reports published on the Marine Accident Investigation Branch

(MAIB) website [7]. The author reviewed all 71 full investigation reports published by the MAIB from 2006 to

the end of August 2008. Only those believed to have some relevance to data considerations are précised here.

An additional report (4/1998) was included as it was already known to have relevant aspects.

7.2.1. Westhaven

Ref: MAIB report 4/1998

On 10 March 1997 fishing boat called Westhaven AH190 caught her trawling equipment on a seabed pipeline,

capsized and sank. The rescue services were alerted by an Emergency Position Indicating Radio Beacon

(EPIRB), the signal from which was picked up by satellite. Unfortunately, the EPIRB was registered to a

different fishing vessel, called Westhaven FR375, which was contacted and found to be safe. The search was

called off, but it later became clear that the correct EPIRB had not been found, and there might still be a vessel in

distress.

Westhaven AH190 had originally been registered under the port number FR375, but was sold and re-registered as

AH190, but retaining the same name. The previous owner bought a new boat and registered it under the same

name and number as his old vessel. The details in the EPIRB registration database were not updated, causing an

association fault: the name, port number and owner details in the database were still all consistent with each

other, but they no longer referred to the boat that the EPIRB was actually fitted to.

7.2.2. Lykes Voyager / Washington Senator

Ref: MAIB report 4/2006

On 8 April 2005 the container ships Lykes Voyager and Washington Senator collided in the Taiwan Straights,

after making evasive manoeuvres which actually put them on a collision course. The master of the Washington

Senator had attempted to contact the Lykes Voyager by VHF radio, to negotiate how the vessel would pass.

However, no identification data was passed during the communication, and the arrangement was actually made

with some other (unknown) ship nearby. By the time that the Washington Senator realised that the other ship

was not manoeuvring as expected, it was too late to avoid the collision.

This was a provenance data fault, as data believed to be from one source actually came from another. If the

data had been labelled as coming from the correct ship (e.g. the wrong callsign was used), then it could have

been classified as a masquerade.

7.2.3. MV Lerrix

Ref: MAIB report 14/2006

On 10 October 2005, MV Lerrix grounded in the Baltic Sea, after the master fell asleep on the bridge of his ship.

Although not causal to the accident, it was later found that the master had been navigating using his own private

laptop and GPS receiver, running pirated navigation software. The data used by this software was five years out

of date. Using the software may have given the master a false sense of security, as it did not integrate inputs

36

from the ship’s radar or Automatic Identification System (AIS) receiver, or provide alerts for navigational

hazards such as deviation from course or proximity of land.

The immediate data fault here is validity exceeded, as the navigational data had not been updated (the UK

Hydrographic Office publishes updates weekly in its Admiralty Notices to Mariners series), although this was

not a causal factor. It is however possible that the fact that the ship’s master believed he was using highly

accurate GPS data for navigation allowed him to become overconfident and cease checking the data from his

other navigational instruments. Together with the comforting glow of his laptop screen on the dark bridge, this

may have contributed to him falling asleep. While this is more to do with the master’s use of data than the data

itself, it could be seen as a provenance fault, as more trust was placed in the navigation data than was merited

by its source.

7.2.4. Dieppe

Ref: MAIB report 18/2006

On 5 December 2005 the passenger ferry Dieppe grounded in the entrance to the port of Newhaven. She was

being navigated using GPS and electronic charts and ran aground in an area where the charts showed that she

should have had a sufficient depth of water. Recent bad weather had caused the channel to silt up, reducing the

available depth by 1.3 m since the previous survey (7 days earlier). The vessel was running late, compounding

the problem as the tide was falling. It was not using its echo sounder. Although the Dieppe’s master was aware

of the hazard of silting, he had not been passed a recent risk assessment which gave guidance on conditions for

entry to the port, and did not take any further precautions himself.

The first fault here is a value fault: the chart was inaccurate as it showed a greater depth of water than was

present, due to the world changing since the data was prepared. There were also two late data faults, since the

channel was not re-surveyed quickly enough after the heavy weather and the master was not provided with the

relevant risk assessment in time to prevent the accident.

7.2.5. P&O Nedlloyd Genoa

Ref: MAIB report 20/2006

The container ship P&O Nedlloyd Genoa encountered high seas in the North Atlantic, losing 27 ISO containers

overboard and having a further 28 crushed on deck. The cargo had been loaded according to a flawed loading

plan which exceeded the maximum allowable weight for some stacks of containers, and violated a rule that

heavier containers should not be stacked on lighter ones. These flaws in the planning data were not detected

either by the planning software, or the ship’s stability computer. Partly this was because the software did not

distinguish between different height containers and therefore applied the wrong rule set when checking stack

weights.

Additionally, some of the remaining damaged containers were found to have actual weights that varied from

their declared weights by up to 20%. These deviations of the actual cargo from that represented by the planning

data contributed further to the overloading of the cargo. The overloading, combined with inconsistent lashing

arrangements and high accelerations due to the ship rolling in heavy weather, meant that some of the lower

containers were crushed, causing their stacks to topple.

This accident can be classified as inconsistency between different data items, as the loading plan was not

consistent with the data provided in the ship’s stability book. Inaccuracte data was also present in the records

for individual containers.

37

7.2.6. FV Harvest Hope

Ref: MAIB report 21/2006

The fishing vessel Harvest Hope foundered on 28 August 2005 after snagging its trawl gear on seabed debris in

the vicinity of a number of North Sea hydrocarbon pipelines. Because of the possibility that one of the pipelines

might have been snagged or damaged by the wreck, it was advisable for the pipeline operators to cease

production or reduce the pressure in the pipelines until the extent of any damage could be surveyed. However,

the largest scale Admiralty chart for the area only showed two of the four pipelines present. This meant that the

Maritime Rescue Co-ordinating Centre (MRCC) contacted initially only two of the three relevant pipeline

operators to warn them of the incident. Had one of the other pipelines been damaged, this could have increased

the severity of any pollution incident.

Although the Hydrographic Office had been notified of the new pipe, their policy was only to make amendments

to charts when a new route was for some reason “safety-critical”, or when the chart scale is large enough to show

the gap between new and existing pipelines. In this case the gap would have been only around half a millimetre

on the 1:200 000 scale chart.

The MRCC had a database of subsea hazards available that did identify all the relevant pipelines. It was not

used however, because of a perception that it was less accurate than Admiralty Charts, as it was only updated

twice a year, rather than as and when changes were found necessary.

The failure of the Admiralty chart to identify all the artefacts of interest in the area can be classified as an

insufficient resolution fault.

7.2.7. FV Brothers

Ref: MAIB report 1/2007

On 1 June 2006 the fishing vessel Brothers grounded and sank off Scotland with the loss of both its crewmen.

The accident was probably caused by the crew falling asleep due to the effects of fatigue and alchohol. While

data was not a causal factor in the accident, the rescue operation was delayed by a data error which could have

influenced the crew’s chance of survival.

Once the vessel had been reported missing, the MRCC attempted to use mobile phone network records to

determine the last time the vessel was known to be afloat, and use this information together with their assumed

course and tidal patterns to calculate a search area. Although they were passed a correct time for the last contact

with the skipper’s phone, they used a value approximately an hour earlier in their calculations. This meant that

rescue efforts were initially concentrated in the wrong search area, affecting the crew’s chance of being found

alive.

This was an inaccurate value data fault.

7.2.8. Arctic Ocean / Maritime Lady

Ref: MAIB report 2/2007

On 5 December 2006 the container ship Arctic Ocean collided with the cargo vessel Maritime Lady as it entered

the Elbe river from Brunsbüttel Lock. Possible contributory factors include potentially misleading information

in the Admiralty Sailing Directions on the rules for right of way in the river, and the fact that the Vessel Traffic

Service controlling the area did not provide Arctic Ocean with a traffic report before she started the manoeuvre.

The issue with the right of way rules can be classified as ambiguity. As the traffic report was not provided at

all, this factor is classified as omission in the time domain.

38

7.2.9. Hilli

Ref: MAIB report 4/2007

On 10 October 2003 an explosion occurred in the boiler of the liquid natural gas carrier Hilli. Two contractors

had been cleaning the boiler using a sulphamic acid-based chemical cleaning agent. The acid reacted with the

steel wall of the boiler to produce hydrogen gas, despite the presence of an inhibitor that was supposed to

prevent this. The hydrogen was ignited by a halogen lamp, causing the explosion. One of the men received fatal

injuries.

A potential factor in the accident is that the product data sheet and safety data sheet for the cleaning agent did

not describe the function of the inhibitor, the possible evolution of hydrogen, or the risk of the explosive

atmosphere that could result. This meant that sufficient precautions were not taken by the contractors.

The lack of data about the hazardous effects of the cleaning agent in its data sheet can be classified as an

omission in the value domain.

7.2.10. MV Thunder

Ref: MAIB report 12/2007

MV Thunder dragged its anchor and grounded off Mostyn in the Dee Estuary approaches on 10 August 2006,

after the vessel had anchored in an inappropriate area. The Thunder’s master had not been provided with a

sufficiently large scale chart for navigation to the port of Mostyn and knew that he would be unaware of

potential grounding hazards nearby. He planned to anchor in a safe location offshore to await boarding by a

pilot. However, he was persuaded to anchor further in towards the port by an agent of the shipping company,

who had emailed the GPS coordinates of a “preferred anchorage” and a list of GPS waypoints to allow

navigation there. The master had assumed that this information had come from a qualified pilot or

harbourmaster, which was not the case. The master’s copy of the relevant Admiralty Sailing Directions had also

not been amended with the most recent changes concerning Mostyn pilot boarding locations. This meant he did

not notice that the new location was not a recognised boarding point. The scale of map being used made it

difficult for the crew to identify that the anchor was being dragged when strong winds developed overnight.

The use of the inappropriate chart is an insufficient resolution fault, while the fact that the proper chart was not

available is omission. The fact that the Sailing Directions had not been properly updated means that there was

also a validity exceeded fault. Finally, the reliance on navigation data from the company agent was a

provenance fault, as the master assumed that it had been supplied by a qualified source.

7.2.11. Octopus / Harald

Ref: MAIB report 18/2007

The jack-up barge Octopus was being towed by the tug Harald in Stronsay Firth, off the Orkney Islands on 8

September 2006, when it grounded on an uncharted bank. Its legs had been lowered to a depth of 13m for

stability in towing, but the depth of water over the bank was only 8m. The tug was using the best available chart

of the area, which showed that at least 20m of water could have been expected.

While the chart was the latest available, it was based on lead line survey data from the mid 1840s. This data is

likely to have been accurate, but without sufficient resolution to highlight the hazard of the shallow area (i.e. the

soundings were not close enough together). It is also possible that the bank might have either formed or shifted

during the intervening 160 years.

The tug had used a paper version of the chart for planning its voyage and an electronic version for the voyage.

While the paper version contained warnings about the quality of the source data, the electronic chart did not

contain any information about the level of confidence in the data. This should have been provided as Category

of Zone of Confidence (CATZOC) metadata.

39

The fact that the chart did not highlight the bank is probably an insufficient resolution fault, but could also be

an inaccuracy if there was an inaccurate data point coincident with the location of the bank. The lack of

traceability between the information displayed on the electronic chart and the source data is a provenance fault,

which could have led to more confidence being placed in the chart than was deserved.

7.2.12. Annabella

Ref: MAIB report 21/2007

The container ship Annabella encountered heavy seas on 25 February 2008, resulting in the collapse of a stack of

seven cargo containers, damaging the containers (some of which carried hazardous cargo) and the hold of the

ship. Stresses caused by the movement of the ship resulted in the lowest containers being crushed, as the stack

had been piled too high both for the particular hold location and the stacking limits of the containers. The stack

of 30 ft (non-standard size) ISO containers weighed 225 tonnes, whereas the limit for that area of the hold was

150 tonnes, and the limit for some of the lower containers was 100 tonnes.

The loading plan from the ship was generated by the cargo company’s shore-based planners using software that

was supposed to embody the stability and stowage data provided by the vessel’s manufacturers. However, this

software silently converted the dimensions of the 30 ft containers to 40 ft, meaning that the wrong stack limits

were used for checking. The loading plan data was passed to planners at the shipping terminal, which checked

the availability of the containers, but not their stability. It was then input into the loading computer onboard

Annabella, which again did not recognise the 30 ft containers, and applied 40 ft limits. In neither case did the

data used by the loading software reflect the full detail of the ship’s loading manual.

Additionally, the loading manual had been devised for a particular configuration of the vessel. At the time of the

accident, the ship was configured with a different metacentric height, due to extra ballast being used during ice

operations. This should have resulted in lower limits being applied, as greater forces would have been

experienced by the cargo.

Although the loading limits for each container was recorded on the container itself, it was not present in the

loading data. Some of the lower containers had limits below the ISO standard of 213 tonnes, but there was no

check to ensure that this was not exceeded.

This accident involved value faults in the internal representation of the container dimensions, which resulted in

inconsistency between different data items as the loading plan did not match up to the ship’s stability book

data. It could also be argued that there was omission of the loading limit information from the loading plan.

However, this was a flaw in the design of the system, rather than the data itself.

7.2.13. M-Notices

It is interesting to note that due to accidents similar to some of those mentioned above, the UK Maritime and

Coastguard Agency has published various circulars (M-notices) to warn mariners about specific data-related

hazards. These include advice on the mandatory requirements for registration of Emergency Position Indicating

Radio Beacons (EPIRBs) in a central database, keeping the registration data up to date, maintaining the

equipment and, where necessary, frequently updating the location information in the beacon (MSN 1810, MSN

1816, MGN 302); the importance of correctly setting Automatic Identification System data (MIN 321), and not

relying on that data or VHF radio for collision avoidance (MGN 324); and only using Electronic Chart Display

and Information Systems that meet international standards for display of relevant features and protection of data

(MIN 316) [32].

7.3. Rail Accident Investigation Branch Reports

Modern railways in the UK use a number of data-driven or information processing systems. The Total

Operations Processing System (TOPS) system is used to plan and record information of trains, including the

length, weight and order of their component wagons. Train movements and signalling must also be coordinated

40

with timetable data and data about the layout of the railway. Most trains themselves are fitted with electronic

communications and control gear, as well as On Train Data Recorders (OTDRs).

All the précis in this section are based on reports published on the Rail Accident Investigation Branch (RAIB)

website [8]. The author reviewed all 90 full investigation reports published by the RAIB from 2006 to the end of

August 2008. Only those believed to have some relevance to data considerations are précised here.

7.3.1. RAIB Autumn Adhesion Investigation

Ref: RAIB report 25 (Part 3)/2006

In 2007, the RAIB published a comprehensive investigation into a number of adhesion incidents that occurred

during the autumn of 2005. These included a number of instances where trains slid or were unable to halt as

quickly as expected, causing them to pass signals at danger and overshoot stations. Several near misses could

also have led to collisions. The lack of adhesion was caused by factors such as icing, precipitation and the

presence of contaminants on the rail head (such as leaf residue).

Much of the mainline fleet of rolling stock is fitted with software controlled wheelslide prevention (WSP) and

sanding equipment. The investigation identified that many of the systems involved had not been optimally

configured to respond to the prevailing track conditions. Partly this was due to the choice of strategy in the

relevant standards. However the lack of involvement of some of the rolling stock operators in specification of

parameters was also identified as a contributory factor.

Poor choice of set-up parameters for the WSP software can be classified as an inaccurate value data fault.

7.3.2. Despatch of unsecured load from Besford Hall

Ref: RAIB report 6/2006

On 21 February 2006 a train was despatched from the Besford Hall yard in Crewe with an unsecured load. Due

to a breakdown in communications between a shunter and the yard’s team leader, the train was assembled using

the wrong trucks. These trucks had not been prepared and could at any point have caused an accident by

shedding their load.

The train should have been assembled according to data provided by the Total Operations Processing System

(TOPS) system. This specified which trucks should have been used, in which order. However, the shunter did

not check the truck identification numbers against the data.

The initial fault here was not a data fault. Human factors issues meant that the shunter did not gain the correct

understanding of their task. However, this resulted in an association fault. Once the train had been assembled,

the data in TOPS, which was correct for the intended train, did not match the actual train that passed over the

network. The incorrect data from TOPS could potentially have then be used to make safety-related decisions,

such as a choice of route that would satisfy the restrictions applicable to particular units of rolling stock.

7.3.3. Unauthorised train movement at High Street Kensington

Ref: RAIB report 19/2007

On 29 April 2006 a London Underground train on the District Line went the wrong way at a set of points. The

driver realised the problem and, despite communications problems caused by poor reception and flat radio

batteries, contacted the service controllers, who authorised him to reverse the train, to allow the points to be reset

for the correct route. The train backed up further than was authorised, passing a stop signal and causing the

traction current to be discharged, halting the train. The driver had to exit the cab to determine where the train

had stopped and in doing so fell, injuring his knee. The incident caused delays of over an hour on the line, and

the injured driver was off work for eight days.

41

The initiating event was the selection of the wrong route for the train by the programme machine controlling the

points. This is an electromechanical machine which uses holes punched into plastic tape to set the correct route

for each train. A temporary programme tape was being used due to maintenance work being carried out nearby,

and it is suspected to that this tape had been incorrectly punched. In other circumstances, a similar fault could

have resulted in a collision or derailment.

The initial fault with the punched tape may be classified as a value fault that gave incorrect intent data. The

subsequent failures of communication can be seen as an availability fault, where dynamically required data was

unavailable due to failure of the data source.

7.3.4. Freight Train Derailment at Maltby North

Ref: RAIB report 24/2007

On 28 June 2006 a Freightliner coal train was derailed at Maltby North when points changed under the train.

The control tables for the points required that if a train was present on the section of track approaching the

points, it must have been there at least two minutes before the points could be opened (to give the train time to

either pass or halt at the relevant signal).

One of the causal factors of the accident was that this rule was not actually implemented by the electro-

mechanical mechanism controlling the points.

This accident would not generally be regarded as a data fault, as the contributary factor in question relates to a

relay-based electrical implementation. However, as the connection of the relays could be seen as a

representation of the intent information given in the points control table, the definition could be stretched. The

fault would then be classified as incomplete data, as a required element was not represented.

7.3.5. Possession Irregularity near Manor Park

Ref: RAIB report 26/2007

On 19 March 2007 a crew of Kier Rail maintenance workers working on a line near Manor Park station was

approached by a train travelling at around 80 mph. Although the workers jumped clear the train hit their

wheelbarrows and two of the men were injured by flying debris. The men were on the track because they

believed that their work site was in an authorised “engineering possession”; a section of track that had been

protected from rail traffic to allow work to take place.

Network Rail operates a Possession Planning System, which generates a Weekly Operating Notice (WON)

detailing all approved possessions. Contractors working on the railway negotiate the possessions they will use at

planning meetings held 14 and 6 weeks prior to the time of the possession. In this case, Network Rail had

changed their plans regarding the timing and limits of the possession that Kier Rail had been going to use,

necessitating Kier Rail to change their plans and work on a different site instead. Although plans were drawn up

for the new site, communications failures meant that the new possessions data from the Network Rail systems

was never reflected in Kier Rail’s internal possession planning spreadsheet, and consequently the work crew was

sent to the wrong work site. The crew did not read the plan for their work and thus did not realise that it had

been written for a different location. The site supervisor’s workload meant that he was not physically present at

the site and, in permitting the work to start by mobile phone, never realised that the crew was not at the correct

site.

This fault is an inconsistency between different data items, as different plans came into existence that were not

updated in step with each other.

42

7.3.6. Passenger door open on a moving train near Desborough

Ref: RAIB report 31/2007

A passenger door on a Class 222 train Midland Mainline train manufactured by Bombardier Transportation

opened while the train was moving, on 10 June 2006. The microswitch which reported the status of the door

lock had developed a fault. This was detected by the Train Management System (TMS), which took the door out

of use but did not report the problem to the crew. The lock itself had not properly engaged, and repeated cycles

of the inflatable door seal being deployed meant that the door gradually edged open.

The reason for the door lock not engaging is believed to be an unintended change to the software parameter for

the door motor limit current. This restricted the closing force and meant that when the microswitch fault was

detected and the TMS cut power to the door motor, the lock mechanism had not fully engaged. Unlocked, and

with no positive closing force, the door gradually worked open.

This is an example of an inaccurate value fault, caused by the value changing after preparation.

7.3.7. Fire on HGV shuttle in the Channel Tunnel

Ref: RAIB report 37/2007

On 21 August 2006, a fire broke out on an Heavy Goods Vehicle (HGV) on board a shuttle train in the Channel

Tunnel. All passengers were safely evacuated but the HGV was destroyed and there was some damage to the

carrier truck and the tunnel infrastructure. During the emergency response to the incident, a delay was incurred

in summoning the UK local authority emergency services (as opposed to the tunnel’s own emergency services),

as they required a postcode to locate the incident. The incident location (under the sea, about 11 km from the

English coast) did not have a postcode, and the tunnel’s Fire Detection Controller took 5 minutes to establish a

suitable address to allow the tasking. Had the fire been more serious, this delay could have resulted in the

reduction of the chances of survival of any injured persons.

This issue can be classified as an existence fault, as the data required by the emergency services was not

available in the required format.

7.3.8. Derailment at Cromore, Northern Ireland

Ref: RAIB report 42/2007

On 14 April 2007 an ultrasonic test truck derailed near Cromore. The short wheelbase of the truck, combined

with the speed at which it was being towed and the profile of the track had led it to bounce and oscillate until it

derailed. The main causal factors were that the Weekly Operating Notice (WON) giving details of special train

movements that week contained the wrong speed limit values for the type of track and the Special Operating

Instruction (SOI) for the specific train movement, which should have confirmed limitations for the train, had not

been issued. The WON had been prepared using data from an engineer’s memory, rather than the original

vehicle approval or previous SOIs, and a new SOI was not issued because a staff member was on leave.

Several data faults can be discerned in this accident: a fault in availability led to an inaccuracy, as data from

memory (a source without the appropriate provenance) was substituted for the properly prepared version.

7.3.9. Derailment at Duddeston Junction, Birmingham

Ref: RAIB report 16/2008

On 10 August 2007 several wagons of a Freightliner train derailed near Birmingham, spilling one of the

containers onto the track and blocking several lines. The accident was caused by a combination of a track

43

twisting fault and the uneven load configuration of one of the wagons. While data considerations were not

causal to the accident, use of data could have helped avoid it occurring.

As containers were received by the freight terminal, data about them was input into a computer system called

ERIC. This data included the size and weight of each container. After the containers are loaded onto the train,

their positions are also entered into ERIC, and data from ERIC is fed into the Total Operations Processing

System (TOPS). TOPS also contains information about which wagons form the train, and the limitations on

those wagons. Had cross-checks been built into ERIC or TOPS, the system could have used the data that was

already available to identify that one of the wagons was loaded in a configuration that was outside its allowed

limits. This would have been classified as an inconsistency between different data items.

7.4. Other Selected Accident Reports

7.4.1. ZK-NZP, Ross Island, Antarctica

Ref: New Zealand Office of Air Accidents Investigation Report 79-139 [11]

On 28 November 1979 Air New Zealand Flight 901, a McDonnell Douglas DC-10-30 on an Antarctic

sightseeing flight, crashed into the slopes of Mount Erebus on Ross Island in Antarctica with the loss of all 257

souls on board. The planned flight path did pass directly over Mount Erebus but had been incorrectly

programmed into the flight management computer that guided the aircraft, until immediately prior to the

accident flight. The plan had held an incorrect location for a turning point near the mountain, McMurdo Station.

This incorrect course had taken previous flights to the side of the mountain, rather than directly over it, and the

aircraft had been able to descend to allow the tourists a better view. Before the fatal flight, ground crew had

reprogrammed the computer with the correct route data, without informing the pilots. It appears that the pilots

encountered low visibility and believing that they were over sea-level ice, descended to escape the cloud. The

visual conditions seem to have meant that the crew could not distinguish the uniform, snow-covered ice slope

from the cloud-covered sky.

The original mis-programming of the flight computer is a case of an inaccuracy. The fact that this data was

then changed is an inconsistency between instances of the same data: the aircraft was not programmed for the

same route as on previous occasions, leading the pilots to make the wrong assumptions about the terrain they

were flying over.

7.4.2. N651AA, Cali, Columbia

On 20 December 1995, American Airlines Flight 965, a Boeing 757-223, was on a VOR DME approach to

Alfonso Bonilla Aragón Airport in Cali, Colombia, when it crashed into a nearby mountain at Buga. The crew

had attempted to program the flight management computer to fly towards a DME beacon called Rozo, by trying

to select the identifier shown for it on their charts, “R”. However, the beacon was identified as “ROZO” in the

navigation database, which used “R” to identify a beacon called Romeo, over 130 km away. The plane

commenced a turn towards Romeo, which caused it to fly into nearby high terrain [40].

While beacon designations are supposed to be unique within a country, the Colombian government had assigned

the designation “R” to both Rozo and Romeo. This was a violation of uniqueness. When the navigation

database was prepared, the supplier acted to preserve the integrity of the database by maintaining unique entries,

and designated Rozo by its full name. However, this created an inconsistency between different data items in

the database and published navigation charts. This led to the wrong choice of identifier by the pilots, and an

association fault, when the pilots believed that data relating to one beacon actually related to another.

Gibbon and Ladkin also identified lexical ambiguities in the data exchanged between the pilots and air traffic

controller, where the term “Rozo” had multiple interpretations and could refer both to a navigation beacon and

an approach route [24].

44

7.4.3. N52AW, near Pasamayo, Peru

An Aeroperú Boeing 757-23A crashed into the Pacific Ocean off the coast of Peru on 2 October 1996, after the

crew started to receive erratic information from onboard instruments. The crew started to return to Lima Airport

using manual controls but, while believing the plane to be at a safe altitude, crashed into the sea. The accident

appears to have been initiated by pitot tubes having been covered for maintenance and not unblocked before

take-off, causing the sensors that provide altitude and air speed information to malfunction. When the plane

neared the airport, the pilot asked air traffic control to confirm its height, and was told 9000 ft. The aircraft had

actually been travelling at 1500 ft, but the data available to the control tower was provided by a transponder on

the aircraft, and hence based on the same flawed data as the aircraft’s other systems. Believing the data provided

by the tower, the pilot started his descent too soon and crashed into the water [30].

The blocked pitot tubes meant that pressure transducers were not exposed to the expected air pressure, and hence

the calculated air speed and altitude of the aircraft were inaccurate. Because of the inaccuracies, some of the

data derived from these values was inconsistent with other data items and the pilots were able to detect the

problem. The fault that led immediately to the accident was a masquerade, as data that appeared to come from

an independent source at the air traffic control tower actually came originally from the aircraft. This meant that

the crew put an unmerited level of trust in the data.

7.5. Summary of Accident Analysis

The proposed new data fault taxonomy appears to have been successful in classifying the data faults presented in

this section. The accident reports that have been analysed covered systems implemented using a wide range of

technologies including human and electromechanical systems, as well as the software-based systems more

normally associated with data.

While the majority of faults were classified within the meaning category, a reasonable number of timing and

provenance faults were also identified, as shown in Table 10. However, it is notable that few faults were

identified in the format category, and a number of sub-categories were not used.

Serial Fault Category No. of occurrences

1.0.0 Meaning

1.1.0 Value 2

1.1.1 Meaningless

1.1.2 Inaccurate 11

1.1.3 Association error 4

1.2.0 Insufficient resolution 3

1.2.1 Aliasing

1.3.0 Ambiguity 1

1.3.1 Multiple interpretation 1

1.3.2 Violation of uniqueness 1

1.3.3 Lack of precision

1.4.0 Inconsistency

1.4.1 Between instances of same data 1

1.4.2 Between successive data items

1.4.3 Between different data items 8

1.5.0 Omission 2

1.5.1 Incomplete data 1

1.6.0 Commission

1.6.1 Repetition

1.6.2 Data overrun

2.0.0 Format

45

2.1.0 Wrong scaling or units

2.2.0 Wrong datum 1

2.3.0 Wrong type

2.4.0 Data out of range

2.5.0 Wrong language

2.6.0 Wrong grammar

2.7.0 Data out of sequence

3.0.0 Timing

3.1.0 Omission 4

3.1.1 Availability 2

3.1.2 Existence 1

3.1.3 Access

3.1.4 Loss

3.2.0 Commission

3.2.1 Repeated receipt of data

3.3.0 Early

3.4.0 Late 3

3.4.1 Validity exceeded 2

3.5.0 Data out of sequence

4.0.0 Provenance 5

4.1.0 Masquerade 2

4.2.0 Unknown provenance

Table 10. Occurrence of fault types within reviewed accident reports.

Possible reasons for the low proportion of format faults could include the following:

• Good design means formatting faults are rare.

• Formatting faults are easy to detect, so are often rectified before they exhibit system-level behaviour.

• Formatting faults are difficult to detect, leave little evidence, or manifest as other types of fault (e.g.

value faults or omissions), so are not often identifiable in accident reports.

• Formatting faults are not hazardous, so do not appear often in accident reports.

• The sample of accident reports was not representative.

In the opinion of the author, a combination of the first three bullets is likely. However, further validation with a

larger sample of accident and incident data would be required to determine the true reason(s).

While some categories may be rare as factors in accidents, this would not necessarily mean that they would not

be useful prompts when used as a checklist for hazard identification or system design. This would have to be

verified through practical use of the taxonomy.

The analysis of the accident reports has also raised some points with regard to how faults develop in an accident

sequence. The same fault can in many cases be classified differently depending on the scope one looks at: a

value fault in data used by a single subsystem can be seen as an inconsistency when compared with other linked

subsystems. In many cases more than one data fault is relevant, and faults may cascade through a system. In

some of the accidents reviewed, such as the N52AW crash and G-MEDG incident, the original data faults had

been identified, but recovery from the faults was not complete and further data faults occurred, leading to the

dangerous event.

46

8. Areas for Further Work

8.1. Development of the Data Fault Taxonomy

The taxonomy presented in this report requires use to further validate it as a workable tool for hazard

identification. While using it to classify data faults in accident and incident reports from other countries and

technology domains may have some benefit, it would be more productive to give the taxonomy practical use in

real hazard identification exercises.

It is likely that such practical use would suggest refinements to the taxonomy. These might include areas where

the hierarchy has been over-developed, such that it can be simplified by using only a higher-level category, or

conversely where the range of hazardous faults seen in real systems merits more categories, to allow better

distinction between types of fault.

Areas where the author is unsure that the taxonomy has reached its full maturity include the following:

• The distinction between the time and value domains for omission and commission faults. Do these need

to be kept separate, or could they be better combined, as in SHARD? If they are kept separate, should

they be given different labels to emphasise the differences?

• The sub-categories of omission fault in the timing domain. Is it useful to distinguish between faults

where the source is not available, the data is not available and the source will not grant access to data, or

are they all just causes of the same thing?

• Provenance. Does this category need expanding or splitting up, to distinguish between issues of pure

traceability, and issues of assurance or integrity? Should traceability just include tracing data to its

production source, or also tracing design requirements for data structures and preparation back to

system-level requirements? Does traceability need to be two-way, giving the preparer visibility of the

end use of data?

8.2. Development of Further Guidance for Safety Analysis of Data

This report has found that a body of guidance on analysis and management of data in safety-related systems does

exist. However, this material appears to be disparate, spread over a number of different publications that often

only touch on small areas of the topic. A number of the more useful sources have not yet been formally

published. There appears to be some utility in drawing this guidance together, developing it and incorporating

examples of best practice, to act as a reference work.

The overall aim of the document would be to provide guidance on how to construct and maintain an argument

for the safety of systems that depend on data for their behaviour. Key areas to include in such a document would

include:

• Techniques for identifying potentially hazardous faults and failure modes in data (perhaps based on the

taxonomy presented in this report).

• Techniques, or adaptations of techniques, for identifying which potentially hazardous faults can manifest

unsafe conditions at the system level.

• Strategies for avoiding the causes of such faults and managing the consequences.

The guidance could be based on satisfaction of the Def Stan 00-56 and Def (Aust) 5679 requirements [36, 10]

and structured around a lifecycle process for safety management of data, similar to that proposed by Storey and

Faulkner [47]. It could present a framework that would help identify which techniques were applicable at each

stage of the system’s product lifecycle. As data is only safety-related when considered in the context of a wider

47

system, it would also have to explain how data-focussed tools, techniques, processes and design strategies could

fit in with other areas of engineering, management and safety assessment.

While this information would be useful as a stand-alone publication, it would also provide useful input to

systems safety and systems engineering standards.

8.3. Application to Security

Many of the faults described in this document in a safety context could also be relevant in a security context,

since unhandled faults that can occur accidentally could be exploited for malicious purposes by deliberate

attacks. Examples include corrupting data, jamming or flooding a communications channel, or spoofing

messages. It may be useful to examine whether the data fault taxonomy has any application in the security

domain, or whether security-related work could inspire further refinements in the taxonomy.

8.4. Metadata for Safety Assurance

This report has noted the benefits of metadata: extra information added to a data set, to describe properties of

that data. It would appear that there is significant potential for investigation of the types of metadata that would

be useful to support safety assurance of data.

A key use of metadata is in conveying extra information about data that allows otherwise undetectable subtle

value errors to be detected as inconsistency, formatting, or other types of fault. However, metadata could also be

used to carry provenance information about the supply chain that produced the data, or the needs of the

consumer of that data.

As an example, data could have metadata attached which declared the SIL level of the system that produced it.

This is not especially useful as an indicator of correctness, as the data may be subsequently go stale or be

modified (deliberately or otherwise), as it is transmitted, processed and stored prior to use. However, this

metadata would be useful in letting subsequent links in the data handling chain identify how the data should be

handled to preserve its original integrity, and in allowing the end user to decide how much trust should be placed

in the information.

Metadata will be particularly useful for data in a system-of-systems context, where the component systems are

not specifically designed to work together. In these cases a system architect cannot know in advance the

provenance or integrity of a data supply chain, as might be the case in a conventionally designed system. Subtle

faults in data could be a particular problem in message-passing systems-of-systems, where messages may be

correctly formatted and come directly from an authorised source, but the earlier links of the data supply chain are

obscured. The end user may have no independent way of validating the correctness of the data, i.e. whether a

command they have been given will result in an unsafe outcome.

From the point of view of the majority of systems in a system-of-systems, much of the important data is third-

party. It is not objective data that they interpret, or intent data that defines their behaviour, meaning that it is not

likely to be captured by standard requirements analysis. Metadata provides a mechanism for third-party data to

communicate requirements to the systems that process, communicate or store it, in terms of qualities such as

those identified by DO-200A [3].

There would therefore be merit in work to develop an open framework for metadata to aid in the safety

assessment of data at system run-time.

48

9. Conclusions

This project has reviewed published papers and standards to identify currently available guidance on the analysis

of data in safety related systems. Themes from this source material have been drawn together and developed,

leading to the following conclusions:

• The IEC 2382 definition of data as “a reinterpretable representation of information in a formalized manner

suitable for communication, interpretation or processing,” is a useful definition of what is meant by data,

that can lead to an identification of the types of problem that can make data unfit for purpose, and

potentially hazardous.

• Data may be considered in three categories, any of which may be safety-related:

o Objective – describing objects in the internal or external environment of a system;

o Intent – describing how a system is intended to behave; or

o Third party – describing information used by other systems that is communicated or stored by

the system in question, but not used or prepared by it.

• Introducing data to a system introduces hazards in that the system may behave exactly according to its

specifications, with no fault or failure of hardware and software, but still behave in a way that is unsafe,

due to faults in the particular data being used.

• Faults in data can be considered as conditions when the data available at time of use does not represent the

true intent of the user. Faults may arise from a number of different causes and lead to a number of

different outcomes, some of which may be hazardous at the system level.

• Faults may be considered either detectable or subtle. Subtle faults are those where the data is plausible,

but wrong. While some faults may theoretically be detectable, the level of resources needed to achieve

detection may not be practical.

• The emphasis when designing systems and analysing the safety of data should be to reduce the overall

number of potential faults and the proportion of those faults that cannot be detected.

• A strategy for making subtle faults detectable is to build redundant information or extra knowledge into

data elements, structures and formatting, such that subtle value faults may be detected as faults such as

inconsistencies at a higher level of abstraction.

• If it is not possible to make subtle faults detectable, a system designer must rely on trust to ensure that data

will be correct. An assurance argument can be built up about the process used to supply the data and

ensure its correctness. This argument gives the provenance of the data.

• Metadata (data about data) may provide potential solutions, both to making more faults detectable and to

supplying information about the provenance and handling requirements of safety-related data.

The literature review also found that there is a growing body of guidance concerning analysis and management

of data in safety-related systems, but that this guidance is spread between many different documents dealing with

different aspects of the problem. The project identified a need to consolidate and develop this material into a

coherent set of best practice. It found several specific areas that could be addressed by future work, in particular

the use of metadata and the application of safety concepts about data to the security domain (and visa versa).

The project also found a lack of published material to aid practitioners conducting hazard identification exercises

for data. A taxonomy of data faults has been proposed to help fill this gap. The taxonomy is intended to be used

as a checklist or set of guide words to help designers identify what faults could be present in their data. This

would lead into an analysis of whether those faults would manifest at the system level in a hazardous manner,

and if so, how they could be caused and prevented.

49

The taxonomy has been partially validated by use for classification of data-related factors in accident an incident

reports. The exercise found that the taxonomy was sufficient to classify all identified data-related faults.

However, faults were not identified in every category of the taxonomy and no validation has been provided that

the taxonomy is optimal.

The taxonomy would benefit from further validation work, to check that it can represent all data faults

encountered in real-life accidents. It also requires practical validation to show that it is a useful tool for

practitioners.

50

10. Acronyms

AAIB Air Accident Investigation Branch

AIS Automatic Identification System

ARP Aerospace Recommended Practices

ASSC Formerly: Avionic Systems Standardisation Committee (scope now widened to include all real-

time, high integrity software).

ATS Air Traffic Services

BS British Standard

CATZOC Category of Zone of Confidence

CEE Complex Electronic Element

CENELEC European Committee for Electrotechnical Standardization

Def (Aust) Australian Defence Standard

Def Stan Defence Standard

DME Distance Measuring Equipment

EN European Norm

EPIRB Emergency Position Indicating Radio Beacon

FLS Field Loadable Software

GEIA Government Electronics & Information Technology Association

GPS Global Positioning System

GPWS Ground Proximity Warning System

HGV Heavy Goods Vehicle

IEC International Electrotechnical Commission

IMA Integrated Modular Avionics

ISO International Standards Organisation

MAIB Marine Accident Investigation Branch

Mil-Std (US) Military Standard

MOD Ministry of Defence

MRCC Maritime Rescue Co-ordinating Centre

MV Motor Vessel

OSGB36 Ordnance Survey Great Britain 1936

OTDR On Train Data Recorder

RAIB Rail Accident Investigation Branch

RTCA Radio Technical Commission for Aeronautics

SHARD Software Hazard Analysis and Resolution in Design

SOI Special Operating Instruction

TOPS Total Operations Processing System

VHF Very High Frequency

WGS84 World Geodetic System of 1984

WON Weekly Operating Notice

XML Extensible Markup Language

51

11. Bibliography

[1] JSON website. http://www.json.org/ retrieved 4 September 2008.

[2] RTCA Special Committee 167. Software considerations in airborne systems and equipment certification.

Recommendation DO-178B, RTCA, Inc, Washington, December 1992.

[3] RTCA Special Committee 181. Standards for processing aeronautical data. Recommendation DO-200A,

RTCA, Inc, Washington, September 1998. Cited in Faulkner Storey (2003).

[4] RTCA Special Committee 181. Standards for aeronautical information. Recommendation DO-201A,

RTCA, Inc, Washington, April 2000. Cited by Faulkner and Storey (2003).

[5] Boris Beizer and Otto Vinter. Bug taxonomy and statistics. Website, 2001.

http://inet.uni2.dk/~vinter/bugtaxst.doc retrieved 2 Aug 08.

[6] Air Accident Investigation Branch. AAIB website, 2001-2008.

http://www.aaib.gov.uk/sites/aaib/publications/formal_reports.cfm.

[7] Marine Accident Investigation Branch. MAIB website, 1998-2008.

http://www.maib.gov.uk/publications/investigation_reports.cfm.

[8] Rail Accident Investigation Branch. RAIB website, 2006-2008.

http://www.raib.gov.uk/publications/investigation_reports.cfm

[9] R.W. Butler and G.B. Finelli. The infeasibility of quantifying the reliability of life-critical real-time

software. IEEE Transactions on Software Engineering, 19(1):3–12, Jan 1993.

[10] Tony Cant. Safety engineering for defence systems. Australian Defence Standard Def (Aust) 5679,

Australian Commonwealth Department of Defence, Defence Science and Technology Organisation, Edinburgh,

SA, Australia, March 2007. Issue 2, draft version 1.1 (issued for comment).

[11] R Chippendale. Air New Zealand Mcdonnell-Douglas DC10-30 ZK-NZP, Ross Island, Antarctica 28

November 1979. Aircraft Accident Report 79-139, Office of Air Accidents Investigation, New Zealand Ministry

of Transport, Wellington, New Zealand, May 1980.

[12] International Electrotechnical Commission. Functional safety of electrical/electronic/programmable

electronic safety-related systems - part 2: Requirements for electrical/electronic/programmable electronic safety-

related systems. British Standard BS EN 61508-2:2002, British Standards Institution, March 2002.

[13] International Electrotechnical Commission. Functional safety of electrical/electronic/programmable

electronic safety-related systems - part 3: Software requirements. British Standard BS EN 61508-3:2002, British

Standards Institution, March 2002.

[14] International Electrotechnical Commission. Functional safety of electrical/electronic/programmable

electronic safety-related systems - part 4: Definitions and abbreviations. British Standard BS EN 61508-4:2002,

British Standards Institution, March 2002.

[15] International Electrotechnical Commission. Functional safety of electrical/electronic/programmable

electronic safety-related systems - part 7 - overview of techniques and measures. British Standard BS EN 61508-

7, British Standards Institution, March 2002.

[16] ITAA G48 Committee. GEIA-STD-0010: Standard best practices for system safety program

development and execution. Committee Draft, June 2008.

[17] Alastair Faulkner. Safer data: the use of data in the context of a railway control system. In Proceedings

of the tenth Safety-critical Systems Symposium, pages 217–230, 2002.

52

[18] Alastair Faulkner, P. A. Bennett, Ron Pierce, I. H. A. Johnston, and Neil Storey. The safety management

of data driven safety related systems. In Proc. 19th Int. Conf. Safecomp, pages 86–95, Rotterdam, The

Netherlands, October 2000.

[19] Alastair Faulkner and Ron Pierce. Is it data or is it software? In Proceedings of the 19th International

Safety System Conference, pages 323–329, Huntsville, Alabama, September 2001. System Safety Society.

[20] Alastair Faulkner and Neil Storey. The role of data in safety-related railway control systems. In

Proceedings of the 19th International Safety System Conference, pages 793–800, Huntsville, Alabama,

September 2001. System Safety Society.

[21] Alastair Faulkner and Neil Storey. Data: An often-ignored component of safety-related systems. In

Proceedings of the MOD Equipment Assurance Symposium ESAS02, Bristol, UK, October 2002. Ministry of

Defence.

[22] International Organization for Standardization and International Electrotechnical Commission.

Information technology - vocabulary - part 1: Fundamental terms. British Standard BS ISO/IEC 2382-1:1993,

British Standards Institution, November 1993.

[23] Ken Frazer, Duncan Dowling, and Mike Ainsworth. Developing data management processes for safety

critical systems. In Proceedings of the 21st International Safety System Conference, Ottawa, Canada, August

2003. System Safety Society.

[24] Dafydd Gibbon and Peter Ladkin. Comments on confusing conversation at Cali. Website, February.

1996. Retrieved 10 September 2008.

[25] Ian Glazebrook. Additional guidance and considerations on the application of RTCA DO-178B.

Technical Report 2007-0419, ASSC, August 2007.

[26] CAA Safety Regulation Group. SW01 - regulatory objectives for software safety assurance in ATS

equipment. In CAP670 - Air Traffic Services Safety Requirements. Civil Aviation Authority, June 2003.

[27] A. Harrison and R. H. Pierce. Data management safety requirements derivation. Technical report,

Railtrack plc, June 2000. West Coast Route Modernisation Internal report. Cited by Faulkner (2001).

[28] Paul Hollow, John Mcdermid, and Mark Nicholson. Approaches to certification of reconfigurable IMA

systems. In 10th International Symposium of the International Coucil on Systems Engineering, Minneapolis,

USA, July 2000.

[29] C M Holloway and C W Johnson. Why system safety professionals should read accident reports. In

Proceedings of the 1st International Conference on System Safety, London, June 2006. Institution of Engineering

and Technology.

[30] Peter Ladkin. News and comment on the Aeroperu B757 accident, AeroPeru Flight 603, 2 October 1996,

November 1997. Website retrieved 5 September 2008. http://www.rvs.uni-

bielefeld.de/publications/Incidents/DOCS/ComAndRep/AeroPeru/aeroperu-news.htm.

[31] Bev Littlewood and Lorenzo Strigini. Validation of ultra-high dependability for software-based systems.

Communications of the ACM, 36:69–80, Nov 1993.

[32] Maritime and Coastguard Agency. MCA website. http://www.mcga.gov.uk/c4mca/mcga07-

home/shipsandcargoes/mcga-shipsregsandguidance/marinenotices.htm retrieved 19 June 2008.

[33] T Murray. Blueprint workshop report. Technical Report QINETIQ/S&E/AVC/CR031274, QinetiQ, May

2003.

[34] Ministry of Defence. Requirements for safety related software in defence equipment part 1: Guidance.

Defence Standard Def Stan 00-55, Directorate of Standardization, Glasgow, August 1997. Issue 2.

53

[35] Ministry of Defence. Requirements for safety related software in defence equipment part 1:

Requirements. Defence Standard Def Stan 00-55, Directorate of Standardization, Glasgow, August 1997. Issue

2.

[36] Ministry of Defence. Safety management requirements for defence systems - part 1: Requirements.

Defence Standard Def Stan 00-56, Directorate of Standardization, Glasgow, June 2007. Issue 4.

[37] Ministry of Defence. Safety management requirements for defence systems - part 2: Guidance on a

means of complying with part 1. Defence Standard Def Stan 00-56, Directorate of Standardization, Glasgow,

June 2007. Issue 4.

[38] Ministry of Defence. Guidance on the assurance of safety in systems containing complex electronic

elements in support of Def Stan 00-56 Issue 4. Final draft for approval, July 2008.

[39] Department of Defense. Standard practice for system safety. Military Standard MIL-STD-882D, United

States Department of Defense, February 2000.

[40] Aeronautica Civil of the Republic of Colombia. Controlled flight into terrain American Airlines Flight

965 Boeing 757-223, N651AA, near Cali, Colombia, December 20, 1995. Aircraft accident report, Published on

the web by Peter Ladkin, Santa Fé de Bogota, Colombia, September 1996. Retrieved from http://www.rvs.uni-

bielefeld.de/publications/Incidents/DOCS/ComAndRep/Cali/calirep.html on 9 July 2008.

[41] David Pumfrey. The Principled Design of Computer System Safety Analyses. PhD thesis, Department of

Computer Science, University of York, Sept 1999.

[42] Felix Redmill. History and legacy of IEC 61508. Safety Systems, 17(2):37–41, January 2008.

[43] Carolyn Salmon and Clive Lee. The certification of systems containing software developed using RTCA

DO-178B. Technical Report ASSC/12/0013, ASSC, June 2006.

[44] Roger C Short. Safety assurance of configuration data for railway signal interlockings. In Proceedings of

the 1st International Conference on System Safety, London, June 2006. Institution of Engineering and

Technology.

[45] A J Simpson and J Stoker. Safety challenges in flying UAVs (unmanned air vehicles) in non segregated

airspace. In Proceedings of the 1st International Conference on System Safety, London, June 2006. Institution of

Engineering and Technology.

[46] Neil Storey. Data-driven systems - the state of the ark? Safety Systems, 17(2):28–31, January 2008.

[47] Neil Storey and Alastair Faulkner. Data management in data-driven safety-related systems. In

Proceedings of the 20th International Safety System Conference, pages 466–475, Denver, Colorado, August

2002. System Safety Society.

[48] Neil Storey and Alastair Faulkner. Characteristics of data in data-intensive safety-related systems. In

Proceedings of the 22nd International Conference SafeComp 2003, pages 396–409, Edinburgh, September 2003.

[49] Nassim Nicholas Taleb. Fooled by randomness – the hidden role of chance in life and in the markets.

Cited on Wikiquote, 2001. http://en.wikiquote.org/wiki/Nassim_Nicholas_Taleb.

[50] Andrew S. Tanenbaum. Computer networks. Cited on Wikiquote, 1981.

http://en.wikiquote.org/wiki/Andrew_S._Tanenbaum.

[51] Mark Templeton. Safety integrity of data. Master's thesis, Department of Computer Science, University

of York, York, UK, September 2007.

[52] John Tillotson. System safety and management information systems. In Felix Redmill and T. Anderson,

editors, Aspects of Safety Management: Proceedings of the Ninth Safety-Critical Systems Symposium, Bristol,

54

UK, 6-8 February 2001, pages 13–34, Secaucus, NJ, USA, 2001. Safety Critical Systems Club, Springer-Verlag

New York, Inc.

[53] D. Welbourne and N. P. Bester. Data for software systems important to safety. GEC Journal of

Research, 12(1):50–57, 1995. Cited in Faulkner & Storey (2001).

5
5

A
p
p
e
n
d
ix
 A
.
T
a
x
o
n
o
m
y
 C
o
v
e
ra
g
e
 C
h
a
rt

T
h
e
co
v
er
ag
e
ch
ar
t
b
el
o
w
 s
h
o
w
s
h
o
w
 f
au
lt
 c
at
eg
o
ri
es
 f
ro
m
 t
h
e
so
u
rc
e
m
at
er
ia
l
[5
,
2
7
,
2
0
,
1
7
,
4
1
,
1
2
,
3
,
3
8
]
h
av
e
b
ee
n
 r
ef
le
ct
ed
 i
n
 t
h
e
n
ew

 d
at
a
fa
u
lt

ta
x
o
n
o
m
y
 a
n
d
 w
h
er
e
n
ew

 c
at
eg
o
ri
es
 h
av
e
b
ee
n
 a
d
d
ed
 t
o
 f
il
l
in
 p
er
ce
iv
ed
 g
ap
s
in
 t
h
e
ta
x
o
n
o
m
y
.
 R
o
w
s/
co
lu
m
n
s
w
it
h
 n
o
 c
o
v
er
ag
e
ar
e
la
b
el
le
d
 i
n
 i
ta
li
cs
.

Meaning

Value

Meaningless

Inaccurate data value

Association error

Insufficient data resolution

Aliasing

Ambiguity

Multiple interpretation

Violation of uniqueness

Lack of precision

Inconsistency

Inconsistent between instances

Inconsistent over series

Inconsistent between diverse data

Omission

Incomplete data

Commission

Repetitions

Data overrun

Format

Wrong scaling or units

Wrong datum

Wrong type

Data out of range

Wrong Language

Wrong grammar

Data out of sequence

Timing

Omission

Access rights violation

Existence

Availability

Loss of data

Commission

Repeated receipt of data

Early

Late

Data beyond its period of validity.

Data out of sequence

Provenance

Masquerade

Unknown provenance

1.0.0

1.1.0

1.1.1

1.1.2

1.1.3

1.2.0

1.2.1

1.3.0

1.3.1

1.3.2

1.3.3

1.4.0

1.4.1

1.4.2

1.4.3

1.5.0

1.5.1

1.6.0

1.6.1

1.6.2

2.0.0

2.1.0

2.2.0

2.3.0

2.4.0

2.5.0

2.6.0

2.7.0

3.0.0

3.1.0

3.1.1

3.1.2

3.1.3

3.1.4

3.2.0

3.2.1

3.3.0

3.4.0

3.4.1

3.5.0

4.0.0

4.1.0

4.2.0

W
ro
n
g
 t
y
p
e

X

T
y
p
e
tr
a
n
sf
o
rm
a
ti
o
n

S
c
al
in
g
,
u
n
it
s

X

C
o
n
st
an
t
v
a
lu
e

X

N
o
 s
u
ch
 r
e
so
u
rc
e

X

X

W
ro
n
g
 r
e
so
u
rc
e

ty
p
e

X

W
ro
n
g
 o
b
je
ct

a
cc
es
se
d

X

A
cc
es
s
ri
g
h
ts

v
io
la
ti
o
n

X

D
at
a-
fl
o
w
 a
n
o
m
a
ly

X

In
te
rl
o
ck
 b
u
g

Software Bugs (Beizer)

O
b
je
ct
 b
o
u
n
d
ar
y
 o
r

st
ru
ct
u
re

X

X

O
m
is
si
o
n

X

S
p
u
ri
o
u
s
d
at
a

X

X

P
o
si
ti
o
n
in
g
 e
rr
o
rs

X

T
o
p
o
lo
g
ic
a
l
e
rr
o
rs

X

Railway Infrastructure

A
d
d
re
ss
in
g
 e
rr
o
rs

X

5
6

Meaning

Value

Meaningless

Inaccurate data value

Association error

Insufficient data resolution

Aliasing

Ambiguity

Multiple interpretation

Violation of uniqueness

Lack of precision

Inconsistency

Inconsistent between instances

Inconsistent over series

Inconsistent between diverse data

Omission

Incomplete data

Commission

Repetitions

Data overrun

Format

Wrong scaling or units

Wrong datum

Wrong type

Data out of range

Wrong Language

Wrong grammar

Data out of sequence

Timing

Omission

Access rights violation

Existence

Availability

Loss of data

Commission

Repeated receipt of data

Early

Late

Data beyond its period of validity.

Data out of sequence

Provenance

Masquerade

Unknown provenance

1.0.0

1.1.0

1.1.1

1.1.2

1.1.3

1.2.0

1.2.1

1.3.0

1.3.1

1.3.2

1.3.3

1.4.0

1.4.1

1.4.2

1.4.3

1.5.0

1.5.1

1.6.0

1.6.1

1.6.2

2.0.0

2.1.0

2.2.0

2.3.0

2.4.0

2.5.0

2.6.0

2.7.0

3.0.0

3.1.0

3.1.1

3.1.2

3.1.3

3.1.4

3.2.0

3.2.1

3.3.0

3.4.0

3.4.1

3.5.0

4.0.0

4.1.0

4.2.0

T
y
p
e
 e
rr
o
rs

X

L
a
b
e
ll
in
g
 e
rr
o
rs

X

V
al
u
e
er
ro
rs

X

E
x
is
te
n
ce

X

R
ef
er
en
ce
 e
rr
o
r

X

A
v
a
il
a
b
il
it
y

X

In
co
n
si
st
en
t

X

External Data

T
im

e
ly

X

M
o
d
e
fa
u
lt

X

S
e
q
u
en
ti
al
 f
au
lt

X

X

C
o
m
b
in
at
io
n
al
 f
au
lt

X

P
ro
p
a
g
a
ti
o
n
 f
a
u
lt

T
im

in
g
 f
au
lt

X

Status Data

V
o
lu
m
e
 f
au
lt

X

X

O
m
is
si
o
n

X

X

C
o
m
m
is
si
o
n

X

X

E
a
rl
y

X

X

L
a
te

X

X

SHARD

V
al
u
e

X

T
ra
n
sm
is
si
o
n
 e
rr
o
rs

R
ep
et
it
io
n
s

X

X

IEC 61508

D
el
et
io
n

X

X

5
7

Meaning

Value

Meaningless

Inaccurate data value

Association error

Insufficient data resolution

Aliasing

Ambiguity

Multiple interpretation

Violation of uniqueness

Lack of precision

Inconsistency

Inconsistent between instances

Inconsistent over series

Inconsistent between diverse data

Omission

Incomplete data

Commission

Repetitions

Data overrun

Format

Wrong scaling or units

Wrong datum

Wrong type

Data out of range

Wrong Language

Wrong grammar

Data out of sequence

Timing

Omission

Access rights violation

Existence

Availability

Loss of data

Commission

Repeated receipt of data

Early

Late

Data beyond its period of validity.

Data out of sequence

Provenance

Masquerade

Unknown provenance

1.0.0

1.1.0

1.1.1

1.1.2

1.1.3

1.2.0

1.2.1

1.3.0

1.3.1

1.3.2

1.3.3

1.4.0

1.4.1

1.4.2

1.4.3

1.5.0

1.5.1

1.6.0

1.6.1

1.6.2

2.0.0

2.1.0

2.2.0

2.3.0

2.4.0

2.5.0

2.6.0

2.7.0

3.0.0

3.1.0

3.1.1

3.1.2

3.1.3

3.1.4

3.2.0

3.2.1

3.3.0

3.4.0

3.4.1

3.5.0

4.0.0

4.1.0

4.2.0

In
se
rt
io
n

X

X

R
es
eq
u
en
c
in
g

X

X

C
o
rr
u
p
ti
o
n

D
el
a
y

X

M
as
q
u
er
ad
e

X

In
ac
c
u
ra
te
 d
at
a

v
al
u
e

X

In
su
ff
ic
ie
n
t
d
at
a

re
so
lu
ti
o
n

X

D
a
ta
 a
lt
er
ed
 a
ft
er

p
re
p
a
ra
ti
o
n

U
n
k
n
o
w
n

p
ro
v
en
an
ce

X

U
n
ti
m
e
ly
 d
a
ta

X

X

In
co
m
p
le
te
 d
at
a

X

DO-200A

In
co
rr
ec
t
fo
rm

at

X

T
y
p
e
 e
rr
o
rs

X

R
an
g
e
e
rr
o
rs

X

In
co
rr
ec
t

re
la
ti
o
n
sh
ip
s

b
et
w
ee
n
 s
u
cc
es
si
v
e

d
a
ta
 i
te
m
s

X

U
n
ti
m
e
ly
 d
a
ta

X

MOD CEE Guidance

In
v
a
li
d
 r
e
la
ti
o
n
sh
ip
s

b
et
w
ee
n
 d
if
fe
re
n
t

d
a
ta
 i
te
m
s

X

5
8

Meaning

Value

Meaningless

Inaccurate data value

Association error

Insufficient data resolution

Aliasing

Ambiguity

Multiple interpretation

Violation of uniqueness

Lack of precision

Inconsistency

Inconsistent between instances

Inconsistent over series

Inconsistent between diverse data

Omission

Incomplete data

Commission

Repetitions

Data overrun

Format

Wrong scaling or units

Wrong datum

Wrong type

Data out of range

Wrong Language

Wrong grammar

Data out of sequence

Timing

Omission

Access rights violation

Existence

Availability

Loss of data

Commission

Repeated receipt of data

Early

Late

Data beyond its period of validity.

Data out of sequence

Provenance

Masquerade

Unknown provenance

1.0.0

1.1.0

1.1.1

1.1.2

1.1.3

1.2.0

1.2.1

1.3.0

1.3.1

1.3.2

1.3.3

1.4.0

1.4.1

1.4.2

1.4.3

1.5.0

1.5.1

1.6.0

1.6.1

1.6.2

2.0.0

2.1.0

2.2.0

2.3.0

2.4.0

2.5.0

2.6.0

2.7.0

3.0.0

3.1.0

3.1.1

3.1.2

3.1.3

3.1.4

3.2.0

3.2.1

3.3.0

3.4.0

3.4.1

3.5.0

4.0.0

4.1.0

4.2.0

In
v
a
li
d
 r
e
la
ti
o
n
sh
ip
s

b
et
w
ee
n
 d
at
a
it
e
m
s

a
n
d
 t
h
e
st
at
e
 o
r

in
te
rn
al
 d
at
a
 o
f
th
e

C
E
E

X

C
o
rr
u
p
ti
o
n

R
ep
ea
te
d
 r
ec
ei
p
t
o
f

d
a
ta

X

L
o
ss
 o
f
d
at
a

X

X

D
at
a
d
el
a
y
ed
 o
r
o
u
t

o
f
se
q
u
en
ce

X

X

X

D
el
ib
e
ra
te
 a
tt
a
ck

