
215

© James Inge 2023.

Published by the Safety-Critical Systems Club. All Rights Reserved.

Can software engineering methods give us

better software safety standards?

James Inge

Defence Equipment & Support

Bristol, UK

Abstract Are safety assurance standards actually software engineering arte-

facts, part of the decomposition of organisational goals into software require-

ments and designs? Loosely speaking, aren’t they just software that is executed

by an organisation rather than a computer? And if so, can we use software engi-

neering methods to improve them? Software safety standards have a vital role in

delivering safe products, services and systems. In critical systems, software fail-

ures can lead to significant loss of life, so it is especially important that such

standards are well understood by their users. Yet, they are often verbose, lengthy

documents written by committees; hard for the uninitiated to immediately digest

and understand, and awkward to implement as written. This implies that the re-

view process for such standards is not entirely effective. Building on the author’s

MSc research at the University of Oxford, this paper examines how techniques

from the domain of software engineering and allied fields can be used to improve

the review of standards, potentially leading to better safety standards and safer

systems. It presents a selection of potential techniques, evaluates the results of

applying them to Def Stan 00-055, (the Ministry of Defence’s Requirements for

Safety of Programmable Elements in Defence Systems), shows how they can be

helpful, and discusses the practicalities of applying them to review of new and

existing standards.

1 Introduction

1.1 Why standards for software safety assurance are important

With software playing an ever-increasing role in delivering the functionality of

critical systems, evidently it is important to ensure that software will operate

safely. For critical systems, it is also important to gain confidence that this will

216 James Inge

thescsc.org SCSC SSS’23 scsc.uk

be the case before deploying the system. Failing to adequately plan to achieve

this can be a notable cause of cost rises and delays to major projects.

A well-documented example of such delays was the UK Ministry of Defence

(MOD) procurement of the Chinook Mk 3 helicopter (Fig. 1). Eight Mk 3s were

delivered to specification by Boeing in 2001 at a cost of some £259 million. As

the avionics software for their bespoke digital ‘glass cockpit’ could not be certi-

fied to meet UK military airworthiness standards, they could not be used in op-

erations until 2009 (Burr 2008). The problem was not that the software was

known to be unsafe, but that it was not known to be safe. The MOD could not

demonstrate its safety as it had not contracted for Boeing to provide either suffi-

cient evidence of safety analysis, or access to source code that the MOD could

analyse itself (Bourn 2004). The issue was resolved by first reverting the Mk 3

Chinooks to an earlier, proven design standard at a cost of over £90 million, then

later upgrading them to a different type of glass cockpit. The project for this up-

grade was itself delayed a further nine months due to software development is-

sues (Morse 2013).

Fig. 1. Chinook Mk 3 (© Crown copyright 2016)

This Chinook example demonstrates that it is important for software not just to

work, or even just to work safely: it needs to be demonstrably safe. Achieving

this does not happen by accident. When an organisation needs to acquire new

safety-critical software, it needs to communicate its safety requirements and its

assurance requirements to the supplier as part of the contract. Using assurance

standards for safety assurance such as Def Stan 00-055 (MOD 2021) or IEC

61508 (IEC 2010) is an efficient, repeatable way of doing this that captures ac-

cepted good practice, avoids the need for each project or organisation to work up

its own requirements from scratch.

Can software engineering methods give us better software safety standards? 217

thescsc.org SCSC SSS’23 scsc.uk

1.2 Why quality and review of standards matters

To lead to good outcomes, standards need to have good functional content: what

they prescribe needs to be technically effective. As the state of the art develops,

standards need maintenance to keep them relevant. It is important to review and

update them to incorporate new good practice and remove material which has

become outdated. However, other non-functional aspects of standards are also

important.

Standards need to be easy for their audience to understand and put into prac-

tice, or else risk their technical merit getting lost and the cost of their use rising.

If a standard is ambiguous or hard to use, organisations implementing it are likely

to budget more to account for the extra time required to understand its require-

ments and the risk of getting them wrong. If a standard is hard to understand, it

is likely to be hard to review and technical problems may go un-noticed. This

means that it is desirable for reviews of standards to look at not just their technical

merit, but other quality factors that contribute to their practical effectiveness.

1.3 Are software safety standards software (and would it help if

they were)?

A case can be made to argue that assurance standards for software safety are in

fact software artefacts themselves. Philosophically, they can be seen as sets of

instructions, processes and supporting data that are executed by an organisation,

rather than a machine (Fig. 2). More practically, by setting assurance require-

ments for software, they are a part of its high-level specification – part of the

decomposition from high-level organisational goals to low-level software re-

quirements.

Fig. 2. Standards as an input to the process of an organisation.

Requirements and

Specifications
Organisation

Work product

Standards

218 James Inge

thescsc.org SCSC SSS’23 scsc.uk

According to IEC 61508 (IEC 2010), the definition of ‘software’ includes ‘any

associated documentation pertaining to the operation of a data processing sys-

tem’; and authors such as Ould (1999) and Patton (2005) include specifications

among the set of artefacts to consider as part of the software quality assurance

and testing processes.

Regardless of whether you accept the argument that standards actually are a

type of software, the analogy is helpful. Both software and standards are abstract

information products that have important functional and non-functional attrib-

utes. It is important for both software and standards to be technically correct to

achieve their intent. As documents, it is also important for software code and

standards to be easy to understand, so that problems can easily be identified and

fixed, and so that they can be maintained efficiently in the future. With these

similarities in mind, it is reasonable to ponder whether the discipline of software

engineering can teach us lessons for improving standards.

In software engineering, reviews are recognised as an effective way of im-

proving software quality, and a variety of more structured methods are available

to help verify and validate development artefacts. In contrast, in the author’s

experience, formality in reviews of standards and similar documents often ex-

tends only to having a process of official committees and meetings that leads to

endorsement of a new version.1 They tend not to be formal in the sense of actually

examining the standard in a structured manner, or using formal methods to ex-

ploit the structure and semantics of the standard itself as part of the review. Most

often, reviewers are simply presented with a draft document and asked to respond

with comments. Standards can be lengthy, and reading through and making

meaningful comments can be time-consuming for reviewers.

This paper reports on the results of MSc research carried out by the author at

the University of Oxford (Inge 2019), investigating whether software engineering

techniques could indeed inspire a more effective approach to review of safety

assurance standards.

2 In search of a better review method

To attempt to identify a better way of reviewing software safety assurance stand-

ards and test the hypothesis that software engineering-inspired methods could

provide improvements, the author carried out a literature review to identify po-

tential methods, then applied each of these methods to Def Stan 00-055 Issue 4

(MOD 2016). The results were then compared to evaluate the quantity and type

1 While the ISO/IEC Directives (ISO/IEC 2021) do contain some guidance that can help reviews

(see section 2.2.2), in practice, the author has not been aware of this being applied proactively

in the committees in which he has taken part.

Can software engineering methods give us better software safety standards? 219

thescsc.org SCSC SSS’23 scsc.uk

of issue found by each technique, and the practicalities involved in carrying them

out.

2.1 Approaches to evaluating standards

The author’s experience of reviewing standards consists mainly of what one

might call ‘naïve’ reviews: reviewers are simply given a text and asked to read

through and make comments. An editor or editorial committee determines their

resolution and the document is amended accordingly. A meeting or workshop

may be held to resolve the comments, or this may be left to the editors. A ‘com-

ments form’ often guides reviewers to respond in a certain format. The review

template used by the British Standards Institute for comments on international

standards asks for comments, proposed changes, a reference to the location in the

standard’s text, and a classification of the comment as general, technical or edi-

torial. The structure of these forms and the presentation of the document under

review tends to lead to a particular style of comment. Reviewers read the docu-

ment sequentially and comment on specific sentences, paragraphs or figures as

they come to them. Typically, the comments relate to the wording of a particular

part of the text; it is less usual to receive comments that relate to inconsistencies

or interrelations between different parts of the standard.

While relatively little appears to have been published concerning review of

standards, the author’s experience does not seem uncommon, with other authors

also bemoaning the quality of ad hoc standard review processes and seeking more

rigorous methods (Graydon and Kelly 2013, Steele and Knight 2014).

Wong et al. (2014) did attempt to carry out a systematic review of five stand-

ards used in software safety. They scored them against twelve evaluation criteria

that questioned how thoroughly each standard covers topics they deemed im-

portant like quality assurance and complexity management; if techniques like

cost-benefit analysis or integrity levels were included; and other factors such as

ease of use and active maintenance of the standard. They found some standards

scored higher against some criteria and some against others, and suggested that

projects should select their standards carefully to suit their needs. This analysis

seems a little unsatisfactory: there was a justification for each criterion, but no

explanation of how they chose the set as a whole. Their results seem less indica-

tive of the quality of the standards, and more a consequence of the fact that the

standards they evaluated had been written for different purposes, to fit into dif-

ferent regimes. Of the five standards evaluated, three were general system safety

220 James Inge

thescsc.org SCSC SSS’23 scsc.uk

standards, rather than being software-specific (Def Stan 00-562, the Federal Avi-

ation Administration System Safety Handbook and Mil-Std-882D3). One was not

safety-specific (DO-178B, which addresses development of safety-critical soft-

ware, but assumes the safety analysis will be performed and safety requirements

set according to other standards). Of the five, only NASA-STD-8719.13B4 was

a dedicated software safety standard.

While software developers who have a free choice of safety standard may wel-

come some abstract criteria to aid their selection, standards developers need a

different sort of criteria. They need to understand whether their particular stand-

ard is good for its intended purpose. Wong et al.’s work tells us that standards

should be easy to use and have a good coverage of the topics deemed relevant to

their scope. However, it does not give clear guidance on how to evaluate a stand-

ard on its own.

Graydon and Holloway (2015) also investigated the evaluation of software

safety standards, motivated by the lack of evidence for their efficacy. They ar-

gued that there is little evidence to show that either the standards or the ‘recipes’

used to comply with them actually work. Without this, the apparent correlation

reported between use of safety standards and lack of accidents could just be down

to developers taking care when working with critical systems. Further, Graydon

and Holloway claimed that there is rarely a testable hypothesis of what it means

for a software safety standard to ‘work’. In order to evaluate such a standard

properly, one must first gain a clear understanding of what the standard is sup-

posed to achieve and what the evaluation is expected to test, then plan accord-

ingly.

The software engineering community often advocates various methods of Ver-

ification and Validation (V&V) to ensure the quality of software code (Ould

1999, Patton 2005). However, it can also be argued that the usefulness of V&V

techniques extends beyond code to other artefacts used in the software develop-

ment process. Taking this idea, we will explore how use of methods from soft-

ware engineering, systems engineering and software safety can assist in evaluat-

ing and improving the quality of standards.

2 The UK Ministry of Defence Safety management requirements for defence systems
3 The US Department of Defense Standard practice for system safety.
4 The NASA Software Safety Standard.

Can software engineering methods give us better software safety standards? 221

thescsc.org SCSC SSS’23 scsc.uk

2.2 A review of reviews

2.2.1 Naïve Review

To provide a baseline for comparison, a ‘naïve’ review of Def Stan 00-055 Issue

4 was carried out by the author. This involved reading a hard copy version of the

standard and marking up apparent issues in red pen (approx. 4.5 hours work),

then re-reading and recording a description of each issue, with a proposed reso-

lution, into a comments table (a further 6 hours). The impact of the identified

issues were scored according to Table 1; issues were also classified into 17 types

of problem.

Table 1. Issue impact descriptors.

Impact Descriptor

High Issues that appear to compromise the intent of the document.

Medium Issues that affect the meaning of the document, but do not appear

to compromise its intent.

Low Incorrect, or makes the text harder to understand, but does not sig-

nificantly affect the meaning of the document.

Readability Issues of punctuation, grammar, style and similar that detract from

the readability of the document, but are not otherwise incorrect.

170 issues were recorded, the majority being of Low impact or only affecting

readability. Grammar, ambiguity and punctuation were the most common cate-

gories. An ironic example is the first paragraph of the Foreword. This contains a

punctuation error, a spelling mistake and bad grammatical construction in the

revision note. Instead of explaining that errors in the text have been fixed, it

actually reads that the standard has been updated to “include … minor grammat-

ical and textural [sic] errors” which, while true, is presumably not what was in-

tended! This example is interesting from two viewpoints: it illustrates that gram-

matical errors can be significant as they can change or invert the meaning of the

text; and equally that they are not always worth fixing. The paragraph does not

affect the requirements of the standard, and would inevitably have been replaced

by a new revision note when the next issue is published, even had the mistakes

not been spotted.

The issues identified with the greatest impact tended to be ambiguities (espe-

cially with regard to which requirements were mandatory) or omissions in the

text.

222 James Inge

thescsc.org SCSC SSS’23 scsc.uk

2.2.2 ISO/IEC checklist review

Use of checklists is recommended in code inspections to prompt checks for omis-

sions and avoid reviewers focusing just on what is there, rather than what is miss-

ing. Checklists also provide the ability to capture learning for experience (Fagan

1976, Ould 1999, Patton 2005). The International Organization for Standardiza-

tion (ISO) and International Electrotechnical Commission (IEC) include a Check-

list for Writers and Editors as an annex to their Directives (ISO/IEC 2021), which

appears appropriate for review of an assurance standard.

Applying the ISO/IEC checklist to Def Stan 00-055 took less time than the

naïve review (2.5 hours), but resulted in fewer issues being identified (59). How-

ever, over 90% of these were new issues, and the majority of the issues were of

Medium impact. The most significant category of issues, both in terms of quan-

tity and impact, related to confusion around which parts of the standard were

normative and which informative.

2.2.3 Enhanced Checklist

Having used a checklist from the standards community, the author then looked

to software engineering for inspiration to produce an improved checklist. The

checklists used in a Fagan inspection are supposed to condition inspectors to seek

high-occurrence, high-cost error types (Fagan 1976). The previously obtained

results identify these types of error, theoretically allowing a more efficient check-

list to be generated – we want to identify the common problems more easily and

also reveal more significant problems that are harder to spot.

In practice, this is easier said than done. The most common problems (42%

of the total) related to grammar, punctuation, omitted words and spelling; and it

was not clear how a checklist would help. One might have hoped that these issues

could be detected automatically, but the Microsoft Word spelling and grammar

check did not reveal any of the issues found by the manual reviews (it had may

well have already been used in the drafting process). Many of the other issues

had already been found using the ISO/IEC checklist – how could this be im-

proved further?

Taking inspiration from software requirements engineering, a list of positive

quality attributes of assurance standards was compiled, drawing on suggestions

from multiple sources (Ould 1999, Hull 2005, Patton 2005), as shown Table 2.

Can software engineering methods give us better software safety standards? 223

thescsc.org SCSC SSS’23 scsc.uk

Table 2. Attributes of good requirements for standards

Abstraction

Accuracy

Atomicity

Clarity

Completeness

Consistency

Currency

Feasibility

Legality

Modularity

Non-redundancy

Precision

Relevance

Satisfaction

Structure

Uniqueness

Verifiability

These attributes were then applied as a checklist, both as general prompts for a

read-through of the standard, and where possible, to inspire keyword searches for

specific issues (e.g. finding ‘and’ to identify where requirements were non-

atomic). Overall this process took approximately six hours and the issues it re-

vealed were both more numerous and higher impact than using the ISO/IEC

checklist. There was some overlap (10%) with previously identified issues, but

the vast majority of the issues fell into the new categories listed in Table . For 7

of the 17 categories, no issues were found, hinting that there is perhaps room for

refinement of the list.

2.2.4 Argument review

Ould maintains that the potential for V&V arises from formalism. He argues that

the more structure and formality that is involved in creating a product, the more

well-defined its meaning, and the easier it is to check (Ould 1999). A manual

review of text appears to be an effective generic V&V technique that can be ap-

plied to standards, but these reviews are formal only in terms of their process, not

the treatment of their underpinning semantics. Reviews of text-based documents

are also not especially effective in uncovering high-level issues with strategy or

design (Ould 1999). Some formality can be introduced through using inspection

techniques with rules, criteria and checklists, but to gain greater V&V potential

we somehow need to exploit the underlying structure of the standard. One ap-

proach is to use diagrams and abstraction to help identify high-level faults in

strategy (Ould 1999). This points to reviewing some kind of abstract version of

the standard, suggesting that a modelling approach might be useful.

Models of argument structures are often used to construct safety cases for soft-

ware. Making the argument explicit is intended to help the author explain their

safety case and let reviewers identify problems in its logic. Argument structures

have also been used to model assurance standards (Ankrum and Kromholz 2005,

Galloway et al. 2005), and as a basis for their review (Graydon and Kelly 2013).

One can construct an argument to represent how the standard’s aims are to be

met, then use this structure as a drafting framework. The argument structure can

be reviewed for completeness and consistency, then the standard can be verified

224 James Inge

thescsc.org SCSC SSS’23 scsc.uk

against it. The author has used this method successfully to draft policy docu-

ments. Even when this method of drafting has not been used, a standard can be

modelled retrospectively as an argument structure to facilitate review. This ap-

proach can help reviewers verify that the high-level goals of a software safety

standard have been properly decomposed into requirements placed on the soft-

ware. They can also check that meeting these low-level requirements will plau-

sibly satisfy the overall goal. When using this approach, the need to set a top-

level goal forces modellers to address the question of ‘what it means for a stand-

ard to “work”’ (Graydon and Holloway 2015).

Fig. 3. Overview of argument modelling method.

To test out argument modelling as a review method, an argument was constructed

using the Goal Structuring Notation (GSN) (ACWG 2018) in the ASCE tool (Ad-

elard 2018), mapping parts of Def Stan 00-055 to GSN elements as shown in Fig.

3. This produced a complex network of 111 nodes, with a criss-cross of lines

implying a tight coupling between different parts of the standard. Approximately

half the issues found in the review were identified during the process of con-

structing the model, typically relating to requirements that were non-atomic re-

quirements or had no obvious method of satisfaction. Further issues were found

using the structure-checking tool built into ASCE. Manual review of the argu-

ment structure was carried out using guidance from (Hawkins and Kelly 2010),

(Graydon and Kelly 2013), and the GSN Community Standard (ACWG 2018) –

the latter document proving to provide the most practical advice. However, vis-

ual inspection of the structure did not reveal many further issues. Overall, the

process took around ten hours, similar to the initial naïve review. A key high-

impact findings was that various requirements that appear important to the stand-

ard are not actually well-defined.

Many of the results stem from the text of the standard being unclear or badly

structured, in a way that makes it hard to model. The implication is that the text

will also be hard to use in practice. The goal structure review focused on whether,

if achieved, the requirements would satisfy the aim of the standard. However, it

Can software engineering methods give us better software safety standards? 225

thescsc.org SCSC SSS’23 scsc.uk

was less helpful in highlighting where those requirements might be practical to

model but impractical to achieve.

2.2.5 Relationship modelling review

Goal structures appear to give useful insight into software safety assurance stand-

ards, but only present one view of the standard. Software design reviews are

often supported by modelling that presents multiple coherent views of the soft-

ware, using notations such as the Unified Modelling Language (UML). Different

views can reveal potential problems with different types of relationship, such as

temporal relationships between activities required by a standard. One framework

developed specifically for use with assurance standards is the Reference Assur-

ance Framework (RAF) metamodel (de la Vara et al. 2016).

Reviewing Def Stan 00-055 against the RAF metamodel identified 63 ele-

ments referred to in the standard that could be mapped to classes within the met-

amodel, including requirements, activities, roles and artefacts. The author at-

tempted to construct a model using these classes in the Opencert toolset (Polarsys

2018), but found the functionality it provided impractical to use for a review.

Attempts at constructing a process diagram to represent the activities required by

the standard also failed, due to a lack of detail in Def Stan 00-055 about the se-

quencing of its activities. Instead, UML class diagrams were constructed, show-

ing a static view of the types of relationship between entities described in the

standard.

The results from this review were difficult to classify. Most of the issues iden-

tified by the other methods could be linked to specific portions of the text, with

just a few general comments. They were also relatively easy to assign categories

to. Modelling relationships identified fewer, but more far-reaching issues. They

typically related to problems that affected several different parts of the text, often

blending issues of consistency, completeness and clarity.

2.3 Filtering out problems

The baseline naïve review of Def Stan 00-055 Issue 4 revealed numerous issues.

These were of a generally low significance, such as formatting, punctuation and

style issues. Fixing these would have made the standard a little more readable but

would not have made it much easier to understand or changed its meaning. How-

ever, these issues were not found by the other methods, and addressing them

would have made the standard look more professional. This could be important

from the point of view of acceptance of the document by its stakeholders. The

naïve review also identified various more significant types of issue not found by

226 James Inge

thescsc.org SCSC SSS’23 scsc.uk

the other methods, such as use of incorrect terms or outdated references, which

depend on the expertise and knowledge of the reviewer. One might reasonably

assume that other reviewers would find different issues, or might take a different

view on their validity or relative importance. This implies that to increase the

robustness of this review method, one should use multiple reviewers with differ-

ent backgrounds and knowledge. One could also task them to approach the re-

view from the viewpoint of different roles, as suggested by for code inspections

(Fagan 1976, Patton 2005).

The two checklist-based reviews increased both efficiency and effectiveness

– for those issues they addressed. They were quicker to conduct than thorough

proofreading, but found more medium- and high-impact issues. While effective

at finding issues in their scope, their focus on these issues meant other types of

problem got overlooked. The ISO/IEC checklist mainly found issues with the

presentation and structure of the standard, but the checklist based on software

requirements engineering principles found more substantive issues with the

standard’s actual requirements.

The argument review produced interesting findings. Trying to identify the top-

level goal revealed inconsistency in whether the standard was more about ensur-

ing safety or ‘design integrity’ (freedom from flaws that might contribute to haz-

ards). This recalls the discussion about needing a clear purpose for software

safety standards (Graydon and Holloway 2013), and opens a debate about the

difference between software correctness and safety.

Building models of the relationships between the concepts in Def Stan 00-055

was more difficult than anticipated. The problem was not that the method of mod-

elling seemed unsuited. Indeed, the RAF metamodel provided a helpful way to

think of the constituent elements of the standard’s requirements, and the wide-

spread use of UML in software engineering meant that easy-to-use modelling

tools were widely available. Rather, the standard did not contain the anticipated

information to support coherent models. While this review produced fewer spe-

cific issues than expected, the issues it did find were more fundamental, revealing

several areas where what appeared to be important concepts in the standard were

not addressed properly. It also highlighted that the standard ought to be written

in a way that makes the relationships between its concepts more obvious. A pos-

sible way to do this would be to design models of the processes, obligations,

interactions and other relationships described in the standard before starting to

draft the next iteration.

Fig. 4 shows the relative quantity of issues revealed by the different review

methods. It shows that the traditional method of naively reading a standard and

commenting did indeed highlight more potential problems, but these were gener-

ally less important than those found by the more sophisticated methods. How-

ever, this hides the fact that the different methods tended to find different types

of problem: each method was valuable in a different way.

Can software engineering methods give us better software safety standards? 227

thescsc.org SCSC SSS’23 scsc.uk

Fig. 4. Relative quantity of issues found broken down by impact and review method.

Graydon and Holloway (2015) suggested that one approach to understanding the

intent of a software assurance standard is to consider it as part of a filter model,

similar to that previously been proposed for regulation (Steele and Knight 2014).

Graydon and Holloway saw standards as successful if they ‘filter out’ certain

problems from software, either by making safety issues easier to spot, or by en-

couraging practices that reduce their likelihood or avoid them altogether.

We can adapt this filter model to the review of standards, by selecting review

techniques to filter out different issues from the standard. As with a physical

filter, it is more efficient to use coarse filters first: techniques that are likely to

find major issues fast, rather than clog up the process with fine detail. Fig. 5

illustrates the principle, showing how different types of review checks can be

used to filter out different types of issues, starting with those likely to require the

most fundamental changes to put right if present in a standard.

In practice, it is likely to be impractical to apply all the different types of tech-

nique shown in Fig. 5 to a given review project. While the issues revealed

through this work (Inge 2019) were included in the update of Def Stan 00-055

from Issue 4 to Issue 5, constraints on resource and timescales meant that it was

not considered feasible to deploy the techniques described here more widely in

the formal review.

228 James Inge

thescsc.org SCSC SSS’23 scsc.uk

Fig. 5. A filter model for reviewing standards

Partly, this would have been a duplication of effort, and partly it was thought that

construction of models and training reviewers in the use of the more sophisticated

review methods would take disproportionate effort. However, use of these tech-

niques might have more merit when designing a new assurance standard from

scratch.

3 Conclusions

While it is a moot point whether software safety assurance standards are actually

software, this research has shown that concepts from software engineering can

be applied to make reviews of standards more effective. The requirements-set-

ting parts of standards are similar enough to software requirements to make good

practice from software requirements engineering applicable; and standards con-

tain enough internal structure to make modelling methods useful. For both soft-

ware and standards, there is a benefit to reducing complexity and making arte-

facts easier to understand, both to avoid errors and to aid maintenance.

However, there are some important differences. The use of natural language

in standards makes it much harder to automate the review process, and the long

iteration period of standards documents limits the return on investment provided

by developing tools or learning involved techniques for their review. Typically

assurance standards are only updated every few years, while agile software de-

velopment may iterate versions every few weeks.

Can software engineering methods give us better software safety standards? 229

thescsc.org SCSC SSS’23 scsc.uk

A potential area for both improving the drafting of standards and making them

more amenable to review is the greater use of modelling in their construction

(Model-Based Standards Engineering?) Representing standards using structured

models could make automated checking more feasible, as well as potentially pre-

senting different views of their requirements, that might reveal problems more

easily to human reviewers.5 However, to be cost effective, this kind of model

would be likely to need to be built from the inception of the standard, rather than

reverse engineered later.

A more practical way of improving reviews would be greater use of checklists

as a prompt to reviewers to look for particular types of problem, and guide them

as to how these might be found. Checklists based on desirable aspects of software

or software requirements appear to have merit here, and could be applied more

widely without undue cost.

3.1 Areas for further research

A key area for research would be automated reviews for standards. While some

tools such as spelling and grammar checkers are available, standards writers have

nothing to compare to the range of automated tools for testing and verification

available to software developers. International standards organisations are re-

searching machine-readable standards (Bielfeld and Rodier 2021); combining se-

mantically marked-up standards with formal models using methods such as the

Reference Assurance Framework (de la Vara et al. 2016) would help bring useful

tools for standards review a step closer.

Due to its scope as an MSc project, the research discussed in this paper has

been limited to review methods that can be accomplished by a solo reviewer, but

there is scope to research the benefits of group methods. Fagan recommended

four people as the optimum size for a software code review (Fagan 1976), and

many of the more recent practices grouped under the “agile methods” banner are

intended for use by small development teams. However, standards are intended

for re-use on multiple projects and have a much broader range of stakeholders

(and hence potential reviewers) than typical software code. The uplift of DO-

178B to DO-178C involved 374 active participants, creating a tension between

the need to build wide consensus and the need to draft a coherent document (Dan-

iels 2011). The software industry has developed distributed collaboration tools

such as Bugzilla and Jira for issue management, and GitHub and SourceForge for

source control; there is scope to investigate whether similar tools and methodol-

ogy could help coordinate input from participants in large standards reviews.

5 A model-based approach to standards might also prompt more re-use of common patterns or

templates. This could perhaps help spread good practice and increase consistency between

standards, aiding both reviewers and users of standards .

230 James Inge

thescsc.org SCSC SSS’23 scsc.uk

Finally, this work has focused mainly on the ‘non-functional’ aspects of stand-

ards: qualities such as self-consistency or readability. More research is needed

to verify that safety assurance standards actually have the desired impact in terms

of improving safety.

Acknowledgments The author is grateful to his supervisor Peter Bloodsworth and the Soft-

ware Engineering Programme at the University of Oxford for their support in the MSc research

on which this paper is based, and to Defence Equipment & Support for funding the MSc through

their upskilling fund.

The Chinook image at Fig. 1 is provided by Defence Imagery / SAC Mark Parkinson and used

under the Open Government Licence: https://www.nationalarchives.gov.uk/doc/open-govern-

ment-licence/version/3/

Disclaimers Views expressed in this paper are those of the author, and not necessarily those

of his employer.

References

ACWG (2018) GSN Community Standard version 2, Assurance Case Working Group.

https://scsc.uk/scsc-141B. Accessed 17 September 2022.

Adelard (2018), ASCE software, https://www.adelard.com/asce/choosing-asce/index/. Ac-

cessed 18 June 2018.

Ankrum TS and Kromholz AH (2005) Structured assurance cases: Three common standards.

In Ninth IEEE International Symposium on High-Assurance Systems Engineering

(HASE’05). Institute of Electrical and Electronics Engineers (IEEE). DOI:

10.1109/hase.2005.20.

Bieldfeld A and Rodier K (2021) What’s next in Standards and Standards Publishing at ISO

and IEC. In Typefi Standards Symposium 2021. https://www.typefi.com/standards-sym-

posium-2021/whats-next-in-standards-publishing-iso-iec/. Accessed 15 November 2022

Bourn SJ (2004) Battlefield helicopters. House of Commons report HC 486 2003–2004. Na-

tional Audit Office. https://www.nao.org.uk/wp-content/uploads/2004/04/0304486.pdf.

Accessed 29 May 18

Burr T (2008) Chinook Mk3 helicopters. House of Commons report HC 512 2007–2008. Na-

tional Audit Office. https://www.nao.org.uk/wp-content/uploads/2008/06/0708512.pdf.

Accessed 29 May 18

Daniels D (2011) Thoughts from the DO-178C committee. In Proceedings of the 6th IET Inter-

national Conference on System Safety 2011. Institution of Engineering and Technology.

DOI: 10.1049/cp.2011.0266

De la Vara JL, Ruiz A, Attwood K, Espinoza H, Panesar-Walawege RK, López Á, Del Río I

and Kelly T (2016) Model-based specification of safety compliance needs for critical sys-

tems: A holistic generic metamodel. Information and Software Technology, vol. 72, pp.

16–30. DOI: 10.1016/j.infsof.2015.11.008.

Fagan ME (1976) Design and code inspections to reduce errors in program development. IBM

Systems Journal, vol. 15, no. 3, pp. 182–211. DOI: 10.1147/sj.153.0182

Galloway A, Paige R, Tudor N, Weaver R, Toyn I and McDermid J (2005) Proof vs testing in

the context of safety standards. In 24th Digital Avionics Systems Conference, IEEE. DOI:

10.1109/dasc.2005.1563405

Can software engineering methods give us better software safety standards? 231

thescsc.org SCSC SSS’23 scsc.uk

Graydon PJ and Holloway CM (2015) Planning the unplanned experiment: Assessing the effi-

cacy of standards for safety-critical software. Technical Memorandum NASA/TM-2015-

218804. NASA Langley Research Center.

Graydon PJ and Kelly TP (2013) Using argumentation to evaluate software assurance stand-

ards. Information and Software Technology, vol. 55 no 9 pp. 1551–1562. DOI:

10.1016/j.infsof.2013.02.008.

Hawkins RD and Kelly TP (2010) A systematic approach for developing software safety argu-

ments. Journal of System Safety, vol. 46, no. 4, pp. 25–33. ISSN: 0743-8826.

Hull E, Jackson L and Dick J (2005) Requirements Engineering. Springer-Verlag. ISBN: 978-

1-85233-879-4. DOI: 10.1007/b138335

IEC (2010) IEC 61508 series – Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems. International Electrotechnical Commission

Inge JR (2019) Improved Methods for Review of Software Assurance Standards using Def Stan

00-055 as a Case Study. University of Oxford

ISO/IEC (2021) ISO/IEC Directives, Part 2:2021 – Principles and rules for the structure and

drafting of ISO and IEC documents. International Organization for Standardization, Inter-

national Electrotechnical Commission. https://www.iec.ch/news-resources/reference-mate-

rial. Accessed 17 September 2022

MOD (2016) Def Stan 00-055 Issue 4 – Requirements for safety of Programmable Elements

(PE) in defence systems. Ministry of Defence

MOD (2021) Def Stan 00-055 Issue 5 – Requirements for Safety of Programmable Elements

(PE) in Defence Systems. Ministry of Defence

Morse A (2013) Major projects report 2012. House of Commons report HC 684-I 2012–13.

National Audit Office. https://www.nao.org.uk/wp-content/uploads/2013/03/Major-Pro-

jectsfull-report-Vol-1.pdf. Accessed 29 May 18

Ould MA (1999) Managing software quality and business risk. John Wiley & Sons Ltd. ISBN

047199782X

Patton R (2005) Software testing. Sams Publishing. ISBN 067232798-8

PolarSys (2018) Opencert website. https://www.polarsys.org/opencert/. Accessed 10 January

2019

Steele P and Knight K (2014) Analysis of critical systems certification. In 2014 IEEE 15th

International Symposium on High-Assurance Systems Engineering, pp. 129–136. DOI:

10.1109/HASE.2014.26

Wong WE, Gidvani T, Lopez A, Gao R and Horn M (2014) Evaluating software safety stand-

ards: A systematic review and comparison. In 2014 IEEE Eighth International Conference

on Software Security and Reliability-Companion. pp. 78–87. DOI: 10.1109/SERE-

C.2014.25

